Afraim Salek-Haddadi
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Afraim Salek-Haddadi.
NeuroImage | 2003
Helmut Laufs; Andreas Kleinschmidt; A Beyerle; Evelyn Eger; Afraim Salek-Haddadi; Christine Preibisch; K. Krakow
Electroencephalography-correlated functional magnetic resonance imaging (EEG/fMRI) can be used to identify blood oxygen level-dependent (BOLD) signal changes associated with both physiological and pathological EEG events. Here, we implemented continuous and simultaneous EEG/fMRI to identify BOLD signal changes related to spontaneous power fluctuations in the alpha rhythm (8-12 Hz), the dominant EEG pattern during relaxed wakefulness. Thirty-two channels of EEG were recorded in 10 subjects during eyes-closed rest inside a 1.5-T magnet resonance (MR) scanner using an MR-compatible EEG recording system. Functional scanning by echoplanar imaging covered almost the entire cerebrum every 4 s. Off-line MRI artifact subtraction software was applied to obtain continuous EEG data during fMRI acquisition. The average alpha power over 1-s epochs was derived at several electrode positions using a Fast Fourier Transform. The power time course was then convolved with a canonical hemodynamic response function, down-sampled, and used for statistical parametric mapping of associated signal changes in the image time series. At all electrode positions studied, a strong negative correlation of parietal and frontal cortical activity with alpha power was found. Conversely, only sparse and nonsystematic positive correlation was detected. The relevance of these findings is discussed in view of the current theories on the generation and significance of the alpha rhythm and the related functional neuroimaging findings.
NeuroImage | 2003
Maxime Guye; Geoffrey J. M. Parker; Mark R. Symms; Philip A. Boulby; Claudia A.M. Wheeler-Kingshott; Afraim Salek-Haddadi; Gareth J. Barker; John S. Duncan
In this study, we combined advanced MR techniques to explore primary motor cortex (M1) connectivity in the human brain. We matched functional and anatomical information using motor functional MRI (fMRI) and white matter tractography inferred from diffusion tensor imaging (DTI). We performed coregistered DTI and motor task fMRI in 8 right-handed healthy subjects and in 1 right-handed patient presenting with a left precentral tumour. We used the fast-marching tractography (FMT) algorithm to define 3D connectivity maps within the whole brain, from seed points selected in the white matter adjacent to the location of the maximum of fMRI activation. Connectivity maps were then anatomically normalised and analysed using statistical parametric mapping software (SPM99) allowing group comparisons (left versus right hemisphere in control subjects and patient versus control subjects). The results demonstrated, in all control subjects, strong connections from M1 to the pyramidal tracts, premotor areas, parietal cortices, thalamus, and cerebellum. M1 connectivity was asymmetric, being more extensive in the dominant hemisphere. The patient had differences in M1 connectivity from the control group. Thus, fMRI-correlated DTI-FMT is a promising tool to study the structural basis of functional networks in the human brain in vivo.
NeuroImage | 2001
Louis Lemieux; Afraim Salek-Haddadi; Oliver Josephs; Philip J. Allen; Nathan Toms; Catherine Scott; Karsten Krakow; Robert Turner; D. R. Fish
We report on the initial imaging findings with a new technique for the simultaneous and continuous acquisition of functional MRI data and EEG recording. Thirty-seven stereotyped interictal epileptiform discharges (spikes) were identified on EEG recorded continuously during the fMRI acquisition on a patient with epilepsy. Localization of the BOLD activation associated with the EEG events was consistent with previous findings and EEG source modeling. The time course of activation was comparable with the physiological hemodynamic response function (HRF). The new methodology could lead to novel and important applications in many areas of neuroscience.
Annals of Neurology | 2003
Afraim Salek-Haddadi; Louis Lemieux; Martin Merschhemke; K. J. Friston; John S. Duncan; D. R. Fish
We studied a patient with idiopathic generalized epilepsy and frequent absences, using electroencephalogram‐correlated functional magnetic resonance imaging. Four prolonged runs of generalized spike‐wave discharge occurred during a 35‐minute experiment. Time‐locked activation was observed bilaterally within the thalami in conjunction with widespread but symmetrical cortical deactivation with a frontal maximum. We demonstrate the reciprocal participation of focal thalamic and widespread cortical networks during human absence seizures and suggest reductions in cortical blood flow, in response to synchronized electroencephalogram activity. Ann Neurol 2003;53:663–667
Human Brain Mapping | 2006
Helmut Laufs; Khalid Hamandi; Afraim Salek-Haddadi; Andreas Kleinschmidt; John S. Duncan; Louis Lemieux
A cerebral network comprising precuneus, medial frontal, and temporoparietal cortices is less active both during goal‐directed behavior and states of reduced consciousness than during conscious rest. We tested the hypothesis that the interictal epileptic discharges affect activity in these brain regions in patients with temporal lobe epilepsy who have complex partial seizures. At the group level, using electroencephalography‐correlated functional magnetic resonance imaging in 19 consecutive patients with focal epilepsy, we found common decreases of resting state activity in 9 patients with temporal lobe epilepsy (TLE) but not in 10 patients with extra‐TLE. We infer that the functional consequences of TLE interictal epileptic discharges are different from those in extra‐TLE and affect ongoing brain function. Activity increases were detected in the ipsilateral hippocampus in patients with TLE, and in subthalamic, bilateral superior temporal and medial frontal brain regions in patients with extra‐TLE, possibly indicating effects of different interictal epileptic discharge propagation. Hum Brain Mapp 2006.
Brain Research | 2006
Afraim Salek-Haddadi; Beate Diehl; Khalid Hamandi; Martin Merschhemke; Adam D. Liston; K. J. Friston; John S. Duncan; D. R. Fish; Louis Lemieux
Using continuous EEG-correlated fMRI, we investigated the Blood Oxygen Level Dependent (BOLD) signal correlates of interictal epileptic discharges (IEDs) in 63 consecutively recruited patients with focal epilepsy. Semi-automated spike detection and advanced modeling strategies are introduced to account for different EEG event types, and to minimize false activations from uncontrolled motion. We show that: (1) significant hemodynamic correlates were detectable in over 68% of patients in whom discharges were captured and were highly, but not entirely, concordant with site(s) of presumed seizure generation where known; (2) deactivations were less concordant and may non-specifically reflect the consequential or downstream effects of IEDs on brain activity; (3) a striking pattern of retrosplenial deactivation was observed in 7 cases mainly with focal discharges; (4) the basic hemodynamic response to IEDs is physiological; (5) incorporating information about different types of IEDs, their durations and saturation effects resulted in more powerful models for the detection of fMRI correlates; (6) focal activations were more likely when there was good electroclinical localization, frequent stereotyped spikes, less head motion and less background EEG abnormality, but were also seen in patients in whom the electroclinical focus localization was uncertain. These findings provide important new information on the optimal use and interpretation of EEG-fMRI in focal epilepsy and suggest a possible role for EEG-fMRI in providing new targets for invasive EEG monitoring.
NeuroImage | 2006
Khalid Hamandi; Afraim Salek-Haddadi; Helmut Laufs; Adam D. Liston; K. J. Friston; D. R. Fish; John S. Duncan; Louis Lemieux
We used simultaneous EEG and functional MRI (EEG-fMRI) to study generalized spike wave activity (GSW) in idiopathic and secondary generalized epilepsy (SGE). Recent studies have demonstrated thalamic and cortical fMRI signal changes in association with GSW in idiopathic generalized epilepsy (IGE). We report on a large cohort of patients that included both IGE and SGE, and give a functional interpretation of our findings. Forty-six patients with GSW were studied with EEG-fMRI; 30 with IGE and 16 with SGE. GSW-related BOLD signal changes were seen in 25 of 36 individual patients who had GSW during EEG-fMRI. This was seen in thalamus (60%) and symmetrically in frontal cortex (92%), parietal cortex (76%), and posterior cingulate cortex/precuneus (80%). Thalamic BOLD changes were predominantly positive and cortical changes predominantly negative. Group analysis showed a negative BOLD response in the cortex in the IGE group and to a lesser extent a positive response in thalamus. Thalamic activation was consistent with its known role in GSW, and its detection in individual cases with EEG-fMRI may in part be related to the number and duration of GSW epochs recorded. The spatial distribution of the cortical fMRI response to GSW in both IGE and SGE involved areas of association cortex that are most active during conscious rest. Reduction of activity in these regions during GSW is consistent with the clinical manifestation of absence seizures.
NeuroImage | 2002
Afraim Salek-Haddadi; Martin Merschhemke; Louis Lemieux; D. R. Fish
The ability to continuously acquire simultaneous EEG and fMRI data during seizures presents a formidable challenge both clinically and technically. Published ictal fMRI reports have so far been unable to benefit from simultaneous electrographic recordings and remain largely assumptive. Unique findings from a Continuous EEG-correlated fMRI experiment are presented in which a focal subclinical seizure was captured in its entirety. For the first time dynamic and biphasic Blood Oxygen Level Dependent (BOLD) signal changes are shown using statistical parametric mapping time-locked to the ictal EEG activity localizing seizure generation and propagation sites, with millimeter resolution, to electroclinically concordant gray matter structures. Though presently of limited clinical applicability, a new avenue is opened for further research.
NeuroImage | 2005
Hwr Powell; Matthias J. Koepp; Mark R. Symms; Philip A. Boulby; Afraim Salek-Haddadi; Pamela J. Thompson; John S. Duncan; Mark P. Richardson
Lesion-deficit studies have provided evidence for a functional dissociation between the left medial temporal lobe (MTL) mediating verbal memory encoding and right MTL mediating non-verbal memory encoding. While a small number of functional MRI studies have demonstrated similar findings, none has looked specifically for material-specific lateralization using subsequent memory effects. In addition, in many fMRI studies, encoding activity has been located in posterior MTL structures, at odds with lesion-deficit and positron emission tomography (PET) evidence. In this study, we used an event-related fMRI memory encoding paradigm to demonstrate a material-specific lateralization of encoding in the medial temporal lobes of ten healthy control subjects. Activation was left-lateralized for word encoding, bilateral for picture encoding, and right-lateralized for face encoding. Secondly, we demonstrated the locations of activations revealed using an event-related analysis to be more anterior than those revealed using a blocked analysis of the same data. This suggests that anterior MTL structures underlie memory encoding as judged by subsequent memory effects, and that more posterior activity detected in other fMRI studies is related to deficiencies of blocked designs in the analysis of memory encoding.
Journal of Clinical Neurophysiology | 2004
Khalid Hamandi; Afraim Salek-Haddadi; D. R. Fish; Louis Lemieux
The recording of EEG during functional MRI scanning (EEG/fMRI) has opened up new dimensions in brain research. The simultaneous recording of EEG activity and its temparospatial haemodynamic correlates is a powerful tool in the non-invasive mapping of normal and pathological brain function. The technological constraints imposed by having a conductor (the EEG) within the magnetic environment of the MRI scanner have been sufficiently overcome for high quality EEG recording during MRI. The initial applications of EEG/fMRI were in the study of epileptiform discharges in epilepsy. This has been rapidly followed by studies of normal EEG rhythms and evoked response in healthy subjects. The ability to map brain areas involved in the generation of epileptiform discharges recorded on the surface EEG has been shown using EEG/fMRI in patients with epilepsy. This has potential clinical applications in providing additional localizing information in the pre-surgical workup of epilepsy patients and in gaining a greater understanding of the neurobiology of interictal epileptiform discharges and epileptic seizures. In this review we address the issues in recording EEG during fMRI and review the application of EEG/fMRI in the study of patients with epilepsy at our centre.