Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Africa Fernandez-L is active.

Publication


Featured researches published by Africa Fernandez-L.


Cancer Research | 2009

The miR-17/92 Polycistron Is Up-regulated in Sonic Hedgehog–Driven Medulloblastomas and Induced by N-myc in Sonic Hedgehog–Treated Cerebellar Neural Precursors

Paul A. Northcott; Africa Fernandez-L; John P. Hagan; David W. Ellison; Wesia Grajkowska; Yancey Gillespie; Richard Grundy; Timothy Van Meter; James T. Rutka; Carlo M. Croce; Anna Marie Kenney; Michael D. Taylor

Medulloblastoma is the most common malignant pediatric brain tumor, and mechanisms underlying its development are poorly understood. We identified recurrent amplification of the miR-17/92 polycistron proto-oncogene in 6% of pediatric medulloblastomas by high-resolution single-nucleotide polymorphism genotyping arrays and subsequent interphase fluorescence in situ hybridization on a human medulloblastoma tissue microarray. Profiling the expression of 427 mature microRNAs (miRNA) in a series of 90 primary human medulloblastomas revealed that components of the miR-17/92 polycistron are the most highly up-regulated miRNAs in medulloblastoma. Expression of miR-17/92 was highest in the subgroup of medulloblastomas associated with activation of the sonic hedgehog (Shh) signaling pathway compared with other subgroups of medulloblastoma. Medulloblastomas in which miR-17/92 was up-regulated also had elevated levels of MYC/MYCN expression. Consistent with its regulation by Shh, we observed that Shh treatment of primary cerebellar granule neuron precursors (CGNP), proposed cells of origin for the Shh-associated medulloblastomas, resulted in increased miR-17/92 expression. In CGNPs, the Shh effector N-myc, but not Gli1, induced miR-17/92 expression. Ectopic miR-17/92 expression in CGNPs synergized with exogenous Shh to increase proliferation and also enabled them to proliferate in the absence of Shh. We conclude that miR-17/92 is a positive effector of Shh-mediated proliferation and that aberrant expression/amplification of this miR confers a growth advantage to medulloblastomas.


Oncogene | 2012

Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation

Africa Fernandez-L; Massimo Squatrito; Paul A. Northcott; Aashir Awan; Eric C. Holland; Michael D. Taylor; Zaher Nahle; Anna Marie Kenney

Radiation therapy remains the standard of care for many cancers, including the malignant pediatric brain tumor medulloblastoma. Radiation leads to long-term side effects, whereas radioresistance contributes to tumor recurrence. Radio-resistant medulloblastoma cells occupy the perivascular niche. They express Yes-associated protein (YAP), a Sonic hedgehog (Shh) target markedly elevated in Shh-driven medulloblastomas. Here we report that YAP accelerates tumor growth and confers radioresistance, promoting ongoing proliferation after radiation. YAP activity enables cells to enter mitosis with un-repaired DNA through driving insulin-like growth factor 2 (IGF2) expression and Akt activation, resulting in ATM/Chk2 inactivation and abrogation of cell cycle checkpoints. Our results establish a central role for YAP in counteracting radiation-based therapies and driving genomic instability, and indicate the YAP/IGF2/Akt axis as a therapeutic target in medulloblastoma.


Thrombosis and Haemostasis | 2007

Therapeutic action of tranexamic acid in hereditary haemorrhagic telangiectasia (HHT): Regulation of ALK-1/endoglin pathway in endothelial cells

Africa Fernandez-L; Eva M. Garrido-Martin; Francisco Sanz-Rodríguez; Jose-Ramon Ramirez; Carmelo Morales-Angulo; Roberto Zarrabeitia; Alfonso Perez-Molino; Carmelo Bernabeu; Luisa-Maria Botella

Recurrent epistaxis is the most frequent clinical manifestation of hereditary haemorrhagic telangiectasia (HHT). Its treatment is difficult. Our objective was to assess the use of tranexamic acid (TA), an antifibrinolytic drug, for the treatment of epistaxis in HHT patients and to investigate in vitro the effects of TA over endoglin and ALK-1 expression and activity in endothelial cells. A prospective study was carried out on patients with epistaxis treated with oral TA in the HHT Unit of Sierrallana Hospital (Cantabria, Spain). Primary cultures of endothelial cells were treated with TA to measure the levels of endoglin and ALK-1 at the cell surface by flow cytometry. RNA levels were also measured by real-time PCR, and the transcriptional effects of TA on reporters for endoglin, ALK-1 and the endoglin/ALK-1 TGF-beta pathway were assessed. The results showed that the fourteen HHT patients treated orally with TA improved, and the frequency and severity of their epistaxis were decreased. No complications derived from the treatment were observed. Cultured endothelial cells incubated with TA exhibited increased levels of endoglin and ALK-1 at the protein and mRNA levels, enhanced TGF-beta signaling, and improved endothelial cell functions like tubulogenesis and migration. In summary, oral administration of TA proved beneficial for epistaxis treatment in selected patients with HHT. In addition to its already reported antifibrinolytic effects, TA stimulates the expression ofALK-1 and endoglin, as well as the activity of the ALK-1/endoglin pathway.


Development | 2008

Insulin receptor substrate 1 is an effector of sonic hedgehog mitogenic signaling in cerebellar neural precursors

Susana R. Parathath; Lori A. Mainwaring; Africa Fernandez-L; Dane Ohlosson Campbell; Anna Marie Kenney

Sonic hedgehog (SHH) and insulin-like growth factor (IGF) signaling are essential for development of many tissues and are implicated in medulloblastoma, the most common solid pediatric malignancy. Cerebellar granule neuron precursors (CGNPs), proposed cells-of-origin for specific classes of medulloblastomas, require SHH and IGF signaling for proliferation and survival during development of the cerebellum. We asked whether SHH regulates IGF pathway components in proliferating CGNPs. We report that SHH-treated CGNPs showed increased levels of insulin receptor substrate 1 (IRS1) protein, which was also present in the germinal layer of the developing mouse cerebellum and in mouse SHH-induced medulloblastomas. Previous roles for IRS1, an oncogenic protein that is essential for IGF-mediated proliferation in other cell types, have not been described in SHH-mediated CGNP proliferation. We found that IRS1 overexpression can maintain CGNP proliferation in the absence of SHH. Furthermore, lentivirus-mediated knock down experiments have shown that IRS1 activity is required for CGNP proliferation in slice explants and dissociated cultures. Contrary to traditional models for SHH signaling that focus on gene transcription, SHH stimulation does not regulate Irs1 transcription but rather stabilizes IRS1 protein by interfering with mTOR-dependent IRS1 turnover and possibly affects Irs1 mRNA translation. Thus, we have identified IRS1 as a novel effector of SHH mitogenic signaling that may serve as a future target for medulloblastoma therapies. Our findings also indicate a previously unreported interaction between the SHH and mTOR pathways, and provide an example of a non-classical means for SHH-mediated protein regulation during development.


Biochemical Journal | 2009

TGF-β regulates the expression of transcription factor KLF6 and its splice variants and promotes co-operative transactivation of common target genes through a Smad3-Sp1-KLF6 interaction

Luisa María Botella; Francisco Sanz-Rodríguez; Yusuke Komi; Africa Fernandez-L; Elisa Varela; Eva M. Garrido-Martin; Goutham Narla; Scott L. Friedman; Soichi Kojima

KLF6 (Krüppel-like factor 6) is a transcription factor and tumour suppressor with a growing range of biological activities and transcriptional targets. Among these, KLF6 suppresses growth through transactivation of TGF-beta1 (transforming growth factor-beta1). KLF6 can be alternatively spliced, generating lower-molecular-mass isoforms that antagonize the full-length WT (wild-type) protein and promote growth. A key target gene of full-length KLF6 is endoglin, which is induced in vascular injury. Endoglin, a homodimeric cell membrane glycoprotein and TGF-beta auxiliary receptor, has a pro-angiogenic role in endothelial cells and is also involved in malignant progression. The aim of the present work was to explore the effect of TGF-beta on KLF6 expression and splicing, and to define the contribution of TGF-beta on promoters regulated by co-operation between KLF6 and Sp1 (specificity protein 1). Using co-transfection, co-immunoprecipitation and fluorescence resonance energy transfer, our data demonstrate that KLF6 co-operates with Sp1 in transcriptionally regulating KLF6-responsive genes and that this co-operation is further enhanced by TGF-beta1 through at least two mechanisms. First, in specific cell types, TGF-beta1 may decrease KLF6 alternative splicing, resulting in a net increase in full-length, growth-suppressive KLF6 activity. Secondly, KLF6-Sp1 co-operation is further enhanced by the TGF-beta-Smad (similar to mothers against decapentaplegic) pathway via the likely formation of a tripartite KLF6-Sp1-Smad3 complex in which KLF6 interacts indirectly with Smad3 through Sp1, which may serve as a bridging molecule to co-ordinate this interaction. These findings unveil a finely tuned network of interactions between KLF6, Sp1 and TGF-beta to regulate target genes.


Cell Cycle | 2009

Normal and oncogenic roles for microRNAs in the developing brain

Africa Fernandez-L; Paul A. Northcott; Michael D. Taylor; Anna Marie Kenney

MicroRNAS (miRNAs) are small endogenous non-coding RNAs that play important roles in many different biological processes including proliferation, differentiation and apoptosis through silencing of target genes. Emerging evidence indicates that miRNAs are key players in mammalian development that, when altered, contribute to tumorigenesis. However, only a few studies to date have focused on the role of miRNAs in medulloblastoma, the most common malignant pediatric brain tumor. These tumors arise in the cerebellum and may attribute their origins to deregulated proliferation of neural progenitor cells during development. Understanding the interplay between normal brain development and medulloblastoma pathogenesis is necessary in order for more efficient, less toxic targeted therapies to be developed and implemented. MiRNA expression profiling of both mouse and human medulloblastomas has led to the identification of signatures correlating with the molecular subgroups of medulloblastoma, tumor diagnosis and response to treatment, as well as novel targets of potential clinical relevance. This review summarizes the recent miRNA literature in both medulloblastoma and normal brain development.


Archive | 2009

TGF-? regulates expression of KLF6 and its splice variants, and promotes cooperative transactivation of common target genes through a Smad3/Sp1/KLF6 interaction

Luisa María Botella; Francisco Sanz-Rodríguez; Yusuke Komi; Africa Fernandez-L; Elisa Varela; Eva M. Garrido-Martin; Goutham Narla; Scott L. Friedman; Soichi Kojima

KLF6 (Krüppel-like factor 6) is a transcription factor and tumour suppressor with a growing range of biological activities and transcriptional targets. Among these, KLF6 suppresses growth through transactivation of TGF-beta1 (transforming growth factor-beta1). KLF6 can be alternatively spliced, generating lower-molecular-mass isoforms that antagonize the full-length WT (wild-type) protein and promote growth. A key target gene of full-length KLF6 is endoglin, which is induced in vascular injury. Endoglin, a homodimeric cell membrane glycoprotein and TGF-beta auxiliary receptor, has a pro-angiogenic role in endothelial cells and is also involved in malignant progression. The aim of the present work was to explore the effect of TGF-beta on KLF6 expression and splicing, and to define the contribution of TGF-beta on promoters regulated by co-operation between KLF6 and Sp1 (specificity protein 1). Using co-transfection, co-immunoprecipitation and fluorescence resonance energy transfer, our data demonstrate that KLF6 co-operates with Sp1 in transcriptionally regulating KLF6-responsive genes and that this co-operation is further enhanced by TGF-beta1 through at least two mechanisms. First, in specific cell types, TGF-beta1 may decrease KLF6 alternative splicing, resulting in a net increase in full-length, growth-suppressive KLF6 activity. Secondly, KLF6-Sp1 co-operation is further enhanced by the TGF-beta-Smad (similar to mothers against decapentaplegic) pathway via the likely formation of a tripartite KLF6-Sp1-Smad3 complex in which KLF6 interacts indirectly with Smad3 through Sp1, which may serve as a bridging molecule to co-ordinate this interaction. These findings unveil a finely tuned network of interactions between KLF6, Sp1 and TGF-beta to regulate target genes.


BMC Medical Genetics | 2008

Mutation study of Spanish patients with Hereditary Hemorrhagic Telangiectasia

Ana Fontalba; Africa Fernandez-L; Eva García-Alegria; Virginia Albiñana; Eva M. Garrido-Martin; Francisco J. Blanco; Roberto Zarrabeitia; Alfonso Perez-Molino; Maria E. Bernabeu-Herrero; Maria-Luisa Ojeda; Jose L. Fernandez-Luna; Carmelo Bernabeu; Luisa María Botella

BackgroundHereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant and age-dependent vascular disorder characterised mainly by mutations in the Endoglin (ENG) or activin receptor-like kinase-1 (ALK1, ACVRL1) genes.MethodsHere, we have identified 22 ALK1 mutations and 15 ENG mutations, many of which had not previously been reported, in independent Spanish families afflicted with HHT.ResultsWe identified mutations in thirty-seven unrelated families. A detailed analysis of clinical symptoms was recorded for each patient analyzed, with a higher significant presence of pulmonary arteriovenous malformations (PAVM) in HHT1 patients over HHT2. Twenty-two mutations in ALK1 and fifteen in ENG genes were identified. Many of them, almost half, represented new mutations in ALK1 and in ENG. Missense mutations in ENG and ALK1 were localized in a tridimensional protein structure model.ConclusionOverall, ALK1 mutations (HHT2) were predominant over ENG mutations (HHT1) in our Spanish population, in agreement with previous data from our country and other Mediterranean countries (France, Italy), but different to Northern Europe or North America. There was a significant increase of PAVM associated with HHT1 over HHT2 in these families.


Cell Cycle | 2010

p27Kip1, a double-edged sword in Shh-mediated medulloblastoma: Tumor accelerator and suppressor

Bobby Bhatia; Arfa Malik; Africa Fernandez-L; Anna Marie Kenney

Medulloblastoma, a brain tumor arising in the cerebellum, is the most common solid childhood malignancy. The current standard of care for medulloblastoma leaves survivors with life-long side effects. Gaining insight into mechanisms regulating transformation of medulloblastoma cells-of-origin may lead to development of better treatments for these tumors. Cerebellar granule neuron precursors (CGNPs) are proposed cells-of-origin for certain classes of medulloblastoma, specifically those marked by aberrant Sonic hedgehog (Shh) signaling pathway activation. CGNPs require signaling by Shh for proliferation during brain development. In mitogen-stimulated cells, nuclear localized cyclin dependent kinase (cdk) inhibitor p27 (Kip1) functions as a checkpoint control at the G1- to S-phase transition by inhibiting cdk2. Recent studies have suggested cytoplasmically localized p27kip1 acquires oncogenic functions. Here, we show that p27Kip1 is cytoplasmically localized in CGNPs and mouse Shh-mediated medulloblastomas. Tranasgenic mice bearing an activating mutation in the Shh pathway and lacking one or both p27Kip1 alleles have accelerated tumor incidence compared to mice bearing both p27Kip1 alleles. Interestingly, mice heterozygous for p27Kip1 have decreased survival latency compared to p27Kip1-null animals. Our data indicate that this may reflect the requirement for at least one copy of p27Kip1 for recruiting cyclin D/cdk4/6 to promote cell cycle progression yet insufficient expression in the heterozygous or null state to inhibit cyclin E/cdk2. Finally, we find that mis-localized p27Kip1 may play a positive role in motility in medulloblastoma cells. Together, our data indicate that the dosage of p27Kip1 plays a role in cell cycle progression and tumor suppression in Shh-mediated medulloblastoma expansion.


Carcinogenesis | 2010

The TGF-β co-receptor endoglin modulates the expression and transforming potential of H-Ras

Juan F. Santibanez; Eduardo Pérez-Gómez; Africa Fernandez-L; Eva M. Garrido-Martin; Amancio Carnero; Marcos Malumbres; Calvin P.H. Vary; Miguel Quintanilla; Carmelo Bernabeu

Endoglin is a coreceptor for transforming growth factor-β (TGF-β) that acts as a suppressor of malignancy during mouse skin carcinogenesis. Because in this model system H-Ras activation drives tumor initiation and progression, we have assessed the effects of endoglin on the expression of H-Ras in transformed keratinocytes. We found that TGF-β1 increases the expression of H-Ras at both messenger RNA and protein levels. The TGF-β1-induced H-Ras promoter transactivation was Smad4 independent but mediated by the activation of the TGF-β type I receptor ALK5 and the Ras-mitogen-activated protein kinase (MAPK) pathway. Endoglin attenuated stimulation by TGF-β1 of both MAPK signaling activity and H-Ras gene expression. Moreover, endoglin inhibited the Ras/MAPK pathway in transformed epidermal cells containing an H-Ras oncogene, as evidenced by the levels of Ras-guanosine triphosphate, phospho-MAPK kinase (MEK) and phospho-extracellular signal-regulated kinase (ERK) as well as the expression of c-fos, a MAPK downstream target gene. Interestingly, in spindle carcinoma cells, that have a hyperactivated Ras/MAPK pathway, endoglin inhibited ERK phosphorylation without affecting MEK or Ras activity. The mechanism for this effect is unknown but strongly depends on the endoglin extracellular domain. Because the MAPK pathway is a downstream mediator of the transforming potential of Ras, the effect of endoglin on the oncogenic function of H-Ras was assessed. Endoglin inhibited the transforming capacity of H-Ras(Q61K) and H-Ras(G12V) oncogenes in a NIH3T3 focus formation assay. The ability to interfere with the expression and oncogenic potential of H-Ras provides a new face of the suppressor role exhibited by endoglin in H-Ras-driven carcinogenesis.

Collaboration


Dive into the Africa Fernandez-L's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmelo Bernabeu

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luisa María Botella

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Eva M. Garrido-Martin

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alfonso Perez-Molino

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Roberto Zarrabeitia

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco J. Blanco

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Paul A. Northcott

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge