Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Afsar Rahbar is active.

Publication


Featured researches published by Afsar Rahbar.


Science Signaling | 2010

HCMV-Encoded Chemokine Receptor US28 Mediates Proliferative Signaling Through the IL-6–STAT3 Axis

Erik Slinger; David Maussang; Andreas Schreiber; Marco Siderius; Afsar Rahbar; Alberto Fraile-Ramos; Sergio A. Lira; Cecilia Söderberg-Nauclér; Martine J. Smit

A viral G protein–coupled receptor may initiate a positive feedback loop to promote tumor proliferation and vascularization. A Viral Pathway to Tumor Development Human cytomegalovirus (HCMV), a widespread human herpesvirus that persists in a latent form, is associated with pathological processes in immunocompromised hosts and has been implicated in the development of several forms of cancer, including glioblastoma. HCMV encodes a G protein–coupled receptor, US28, that resembles a chemokine receptor and constitutively activates signaling pathways associated with cell proliferation. Slinger et al. expressed US28 in cultured cells to explore the mechanisms through which it could promote tumor development. They found that US28 stimulated the production and secretion of both vascular endothelial growth factor (VEGF) and the cytokine interleukin-6 (IL-6) and defined a signaling pathway whereby US28 increased cell proliferation through IL-6–dependent activation of the JAK1-STAT3 axis. IL-6 is itself a target of STAT3, leading the authors to propose that US28-dependent production and secretion of IL-6 and consequent autocrine and paracrine STAT3 activation lead to establishment of a positive feedback loop that promotes proliferation of both infected and neighboring cells. Analyses of human glioblastoma tissue revealed US28 and activated STAT3 in cells lining blood vessels, suggesting that US28 may play a role in tumor vascularization. US28 is a viral G protein (heterotrimeric guanosine triphosphate–binding protein)–coupled receptor encoded by the human cytomegalovirus (HCMV). In addition to binding and internalizing chemokines, US28 constitutively activates signaling pathways linked to cell proliferation. Here, we show increased concentrations of vascular endothelial growth factor and interleukin-6 (IL-6) in supernatants of US28-expressing NIH 3T3 cells. Increased IL-6 was associated with increased activation of the signal transducer and activator of transcription 3 (STAT3) through upstream activation of the Janus-activated kinase JAK1. We used conditioned growth medium, IL-6–neutralizing antibodies, an inhibitor of the IL-6 receptor, and short hairpin RNA targeting IL-6 to show that US28 activates the IL-6–JAK1–STAT3 signaling axis through activation of the transcription factor nuclear factor κB and the consequent production of IL-6. Treatment of cells with a specific inhibitor of STAT3 inhibited US28-dependent [3H]thymidine incorporation and foci formation, suggesting a key role for STAT3 in the US28-mediated proliferative phenotype. US28 also elicited STAT3 activation and IL-6 secretion in HCMV-infected cells. Analyses of tumor specimens from glioblastoma patients demonstrated colocalization of US28 and phosphorylated STAT3 in the vascular niche of these tumors. Moreover, increased phospho-STAT3 abundance correlated with poor patient outcome. We propose that US28 induces proliferation in HCMV-infected tumors by establishing a positive feedback loop through activation of the IL-6–STAT3 signaling axis.


The New England Journal of Medicine | 2013

Survival in Patients with Glioblastoma Receiving Valganciclovir

Cecilia Söderberg-Nauclér; Afsar Rahbar; Giuseppe Stragliotto

A retrospective analysis of selected patients with glioblastoma who received treatment for cytomegalovirus with their anticancer treatment showed surprisingly good 2-year survival. A randomized trial is needed.


Journal of Clinical Investigation | 2011

Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target

Ninib Baryawno; Afsar Rahbar; Nina Wolmer-Solberg; Chato Taher; Jenny Odeberg; Anna Darabi; Zahidul Khan; Baldur Sveinbjørnsson; Ole Martin Fuskevåg; Lova Segerström; Magnus Nordenskjöld; Peter Siesjö; Per Kogner; John Inge Johnsen; Cecilia Söderberg-Nauclér

Medulloblastomas are the most common malignant brain tumors in children. They express high levels of COX-2 and produce PGE2, which stimulates tumor cell proliferation. Human cytomegalovirus (HCMV) is prevalent in the human population and encodes proteins that provide immune evasion strategies and promote oncogenic transformation and oncomodulation. In particular, HCMV induces COX-2 expression; STAT3 phosphorylation; production of PGE2, vascular endothelial growth factor, and IL-6; and tumor formation in vivo. Here, we show that a large proportion of primary medulloblastomas and medulloblastoma cell lines are infected with HCMV and that COX-2 expression, along with PGE2 levels, in tumors is directly modulated by the virus. Our analysis indicated that both HCMV immediate-early proteins and late proteins are expressed in the majority of primary medulloblastomas. Remarkably, all of the human medulloblastoma cell lines that we analyzed contained HCMV DNA and RNA and expressed HCMV proteins at various levels in vitro. When engrafted into immunocompromised mice, human medulloblastoma cells induced expression of HCMV proteins. HCMV and COX-2 expression correlated in primary tumors, cell lines, and medulloblastoma xenografts. The antiviral drug valganciclovir and the specific COX-2 inhibitor celecoxib prevented HCMV replication in vitro and inhibited PGE2 production and reduced medulloblastoma tumor cell growth both in vitro and in vivo. Ganciclovir did not affect the growth of HCMV-negative tumor cell lines. These findings imply an important role for HCMV in medulloblastoma and suggest HCMV as a novel therapeutic target for this tumor.


Journal of the National Cancer Institute | 2009

Activation of Telomerase by Human Cytomegalovirus

Klas Strååt; Cheng Liu; Afsar Rahbar; Qingjun Zhu; Li Liu; Nina Wolmer-Solberg; Fenglan Lou; Zhaoxu Liu; Jie Shen; Jihui Jia; Satoru Kyo; Magnus Björkholm; Jan Sjöberg; Cecilia Söderberg-Nauclér; Dawei Xu

BACKGROUND The mechanism by which human cytomegalovirus (HCMV) stimulates oncogenesis is unclear. Because cellular immortalization and transformation require telomerase activation by expression of the telomerase reverse transcriptase (hTERT) gene, we examined the role of HCMV in telomerase activation. METHODS Normal human diploid fibroblasts (HDFs) and human malignant glioma (MG) cell lines were infected with HCMV or transfected with expression vectors encoding HCMV immediate early (IE) antigen 72 or 86. hTERT expression and promoter activity and telomerase activity were evaluated using reverse transcription-polymerase chain reaction, a luciferase reporter assay, and a telomeric repeat amplification protocol, respectively. hTERT promoter occupancy by the transcription factor Sp1, IE antigens, and histone deacetylases (HDACs) was assessed by chromatin immunoprecipitation. hTERT and IE protein expression in human primary glioblastoma multiforme (GBM) was determined immunohistochemically. All statistical tests were two-sided. RESULTS In telomerase and hTERT-negative HDFs, HCMV infection induced constitutive hTERT expression and telomerase activation. The hTERT promoter activity in HDFs and MG cell lines was statistically significantly enhanced by HCMV in a dose-dependent manner (mean luciferase activity [arbitrary units] in control HDFs and in HDFs infected with HCMV at multiplicities of infection [MOIs] of 0.1 = 6 and 521, respectively, difference = 515, 95% CI = 178 to 850; mean activity at MOI of 1 and 10 = 8828 and 59,923, respectively; P < .001 comparing control with HCMV-infected cells at all MOIs). Ectopic expression of HCMV IE-72 protein also stimulated hTERT promoter activity in HDFs. HCMV-mediated transactivation of the hTERT gene was dependent on the presence of Sp1-binding sites in the hTERT promoter and was accompanied by increases in Sp1 binding, acetylation of histone H3, and a reduction in HDAC binding at the core promoter. In specimens of GBM, HCMV IE and hTERT proteins were colocalized in malignant cells and their levels paralleled each other. CONCLUSIONS HCMV activates telomerase in both HDFs and malignant cells. These findings begin to reveal a novel mechanism by which HCMV infection may be linked to or modulate oncogenesis through telomerase activation.


Journal of Immunology | 2009

T Cell Infiltrates in the Muscles of Patients with Dermatomyositis and Polymyositis Are Dominated by CD28null T Cells

Andreas E. R. Fasth; Maryam Dastmalchi; Afsar Rahbar; Stina Salomonsson; Jayesh M. Pandya; Eva Lindroos; Inger Nennesmo; Karl-Johan Malmberg; Cecilia Söderberg-Nauclér; Christina Trollmo; Ingrid E. Lundberg; Vivianne Malmström

Dermatomyositis and polymyositis are disabling rheumatic diseases characterized by an appreciable number of T cells infiltrating muscle tissue. The precise phenotype, function and specificity of these cells remain elusive. In this study, we aimed to characterize T cells in muscle tissue and circulation and to investigate their association to clinical phenotype. Twenty-four patients with dermatomyositis and 42 with polymyositis were screened for frequency of CD4+CD28null and CD8+CD28null T cells in peripheral blood by flow cytometry. Presence of these cells in inflamed muscle tissue from 13 of these patients was analyzed by three-color immunofluorescence microscopy. Effector functions, proliferation and Ag specificity were analyzed by flow cytometry after in vitro stimulation. The clinical relevance of CD28null T cells was analyzed by multiple regression analyses including six separate and combined disease variables. We demonstrate that muscle-infiltrating T cells are predominantly CD4+CD28null and CD8+CD28null T cells in patients with dermatomyositis and polymyositis. Muscle-infiltrating CD28null T cells were found already at time of diagnosis. Disease activity correlated with the frequency of CD8+ T cells in the inflamed muscles of polymyositis patients. Circulating CD4+CD28null and CD8+CD28null T cells were significantly more frequent in human CMV (HCMV) seropositive individuals, responded to HCMV Ag stimulation, and correlated with disease duration. These cells also display a proinflammatory cytokine profile, contain perforin and lack the costimulatory molecule CD28. Our observations imply that CD28null T cells represent clinically important effector cells in dermatomyositis and polymyositis, and that HCMV might play a role in propagating disease in a subset of patients.


Inflammatory Bowel Diseases | 2003

Evidence of Active Cytomegalovirus Infection and Increased Production of IL-6 in Tissue Specimens Obtained From Patients With Inflammatory Bowel Diseases

Afsar Rahbar; Lennart Boström; Ulla Lagerstedt; Inger Magnusson; Cecilia Söderberg-Nauclér; Vivi-Anne Sundqvist

Recent reports have focused interest on human cytomegalovirus (HCMV) in inflammatory bowel diseases (IBD). Our aim in this study was to examine the frequency of HCMV-infected intestinal cells in tissue sections obtained from patients with IBD, and to investigate if HCMV-infected intestinal cells produce the proinflammatory cytokine IL-6. We studied intestinal tissue sections from 13 patients with ulcerative colitis, 10 with Crohns disease, 10 cancer patients without intestinal inflammation, and 10 samples from HCMV-infected AIDS patients. HCMV-DNA was detected by in situ hybridization in sections obtained from 12/13 patients with ulcerative colitis, in 10 with Crohns disease, in 10/10 samples from HCMV-infected AIDS patients, but not in any of the 10 samples that were obtained from uninflamed tissues. HCMV-specific antigens were detected in samples from all HCMV-infected AIDS patients, in 11/13 sections from patients with ulcerative colitis, in 10/10 samples from patients with Crohns disease, but not in sections from uninflamed tissues. Cells were double positive for an HCMV early antigen and IL-6 in 10/13 sections from patients with ulcerative colitis, in all patients with Crohns disease, and in 4/10 samples from AIDS patients. In conclusion, these results suggest that active HCMV infection in the intestine is very frequent in patients with IBD, and may contribute to the inflammatory process through an increased production of IL-6.


International Journal of Cancer | 2013

Effects of valganciclovir as an add‐on therapy in patients with cytomegalovirus‐positive glioblastoma: A randomized, double‐blind, hypothesis‐generating study

Giuseppe Stragliotto; Afsar Rahbar; Nina Wolmer Solberg; Anders Lilja; Chato Taher; Abiel Orrego; Birgitta Bjurman; Charlotte Tammik; Petra Skarman; Inti Peredo; Cecilia Söderberg-Nauclér

Cytomegalovirus is highly prevalent in glioblastomas. In 2006, we initiated a randomized, double‐blind, placebo‐controlled, hypothesis‐generating study to examine the safety and potential efficacy of Valganciclovir as an add‐on therapy for glioblastoma. Forty‐two glioblastoma patients were randomized in double‐blind fashion to receive Valganciclovir or placebo in addition to standard therapy for 6 months. Magnetic resonance images were obtained before and immediately and 3 and 6 months after surgery to evaluate treatment efficacy by measuring contrast enhancing tumor volume (primary end point). Survival data were analyzed for patients and controls in explorative analyses to aid the design of future randomized trials. Trends but no significant differences were observed in tumor volumes in Valganciclovir and placebo patients at 3 (3.58 vs. 7.44 cm3, respectively, p = 0.2881) and 6 (3.31 vs. 13.75 cm3, p = 0.2120) months. Median overall survival (OS) was similar in both groups (17.9 vs. 17.4 months, p = 0.430). Patients could take Valganciclovir for compassionate use after the study phase. Explorative analyses showed an OS of 24.1 months (95% CI, 17.4–40.3) in patients receiving >6 months of Valganciclovir (Val > 6M) versus 13.1 months (95% CI, 7.9–17.7, p < 0.0001) in patients receiving Valganciclovir for 0 or <6 months, and 13.7 months (95% CI, 6.9–17.3, p = 0.0031) in contemporary controls. OS at 4 years was 27.3% in Val>6M patients versus 5.9% in controls (p = 0.0466). Prolonged OS in Val>6M patients suggest that future randomized trials are warranted and should evaluate whether continuous antiviral treatment can improve outcome in glioblastoma patients.


PLOS ONE | 2013

High Prevalence of Human Cytomegalovirus Proteins and Nucleic Acids in Primary Breast Cancer and Metastatic Sentinel Lymph Nodes

Chato Taher; Jana de Boniface; Abdul-Aleem Mohammad; Piotr Religa; Johan Hartman; Koon-Chu Yaiw; Jan Frisell; Afsar Rahbar; Cecilia Söderberg-Nauclér

Background Breast cancer is a leading cause of death among women worldwide. Increasing evidence implies that human cytomegalovirus (HCMV) infection is associated with several malignancies. We aimed to examine whether HCMV is present in breast cancer and sentinel lymph node (SLN) metastases. Materials and Methods Formalin-fixed paraffin-embedded tissue specimens from breast cancer and paired sentinel lymph node (SLN) samples were obtained from patients with (n = 35) and without SLN metastasis (n = 38). HCMV immediate early (IE) and late (LA) proteins were detected using a sensitive immunohistochemistry (IHC) technique and HCMV DNA by real-time PCR. Results HCMV IE and LA proteins were abundantly expressed in 100% of breast cancer specimens. In SLN specimens, 94% of samples with metastases (n = 34) were positive for HCMV IE and LA proteins, mostly confined to neoplastic cells while some inflammatory cells were HCMV positive in 60% of lymph nodes without metastases (n = 35). The presence of HCMV DNA was confirmed in 12/12 (100%) of breast cancer and 10/11 (91%) SLN specimens from the metastatic group, but was not detected in 5/5 HCMV-negative, SLN-negative specimens. There was no statistically significant association between HCMV infection grades and progesterone receptor, estrogen receptor alpha and Elston grade status. Conclusions The role of HCMV in the pathogenesis of breast cancer is unclear. As HCMV proteins were mainly confined to neoplastic cells in primary breast cancer and SLN samples, our observations raise the question whether HCMV contributes to the tumorigenesis of breast cancer and its metastases.


Journal of Virology | 2005

Human Cytomegalovirus Infection of Endothelial Cells Triggers Platelet Adhesion and Aggregation

Afsar Rahbar; Cecilia Söderberg-Nauclér

ABSTRACT Human cytomegalovirus (HCMV) is an opportunistic pathogen that has been implicated in the pathogenesis of vascular diseases. HCMV infection of endothelial cells may lead to vascular damage in vitro, and acute-phase HCMV infection has been associated with thrombosis. We hypothesized that viral infection of endothelial cells activates coagulation cascades and contributes to thrombus formation and acute vascular catastrophes in patients with atherosclerotic disease. To assess the effects of HCMV on thrombogenesis, we examined the adhesion and aggregation of blood platelets to uninfected and HCMV-infected endothelial cells. At 7 days after infection, platelet adherence and aggregation were greater in infected than in uninfected cultures (2,000 platelets/100 cells and 225 ± 15 [mean ± standard error of the mean] aggregates/five microscopic fields versus 100 platelets/100 cells and no aggregates). von Willebrand factor (vWF), ICAM-1, and VCAM-1 but not collagen IV, E-selectin, P-selectin, CD13, and CD31 were expressed at higher levels on infected cells than on uninfected cells. Platelet aggregation was inhibited by blocking of platelet GPIb (with blocking antibodies) or GPIIb/IIIa (with ReoPro) or by blocking of vWF (with polyclonal antibodies to vWF). Furthermore, blocking of vWF, platelet GPIb, and ICAM-1 but not of the endothelial cell marker CD13, α5β3-integrin, or HCMV glycoprotein B reduced platelet adherence to infected cells by 75% ± 5%, 74% ± 5%, or 18% ± 5%, respectively. The increased thrombogenicity was dependent on active virus replication and could be inhibited by foscarnet and ganciclovir; these results suggest that a late viral gene may be mediating this phenomenon, which may contribute to vascular catastrophes in patients with atherosclerotic disease.


Journal of Experimental Medicine | 2008

Human CMV infection induces 5-lipoxygenase expression and leukotriene B4 production in vascular smooth muscle cells

Hong Qiu; Klas Strååt; Afsar Rahbar; Min Wan; Cecilia Söderberg-Nauclér; Jesper Z. Haeggström

Leukotrienes (LTs) are powerful proinflammatory lipid mediators that may play a central role in cardiovascular diseases, including arteriosclerosis, myocardial infarction, and stroke. Owing to restricted expression of 5-lipoxygenase (5-LO), the enzyme required for their synthesis, LTs are almost exclusively produced by myeloid cells. Here, we report that human cytomegalovirus (HCMV) infection of human vascular smooth muscle cells (SMCs) increases 5-LO mRNA levels by up to 170-fold in a dose- and time-dependent manner. Infected cells expressed 5-LO protein, as shown by immunohistochemistry, enabling them to synthesize bioactive LTB4. HCMV-infected vascular SMCs expressing 5-LO protein were readily detected in tissue samples from CMV-infected patients with inflammatory bowel disease or AIDS. Thus, pathogen-induced LT production in HCMV-infected tissues may contribute to local inflammation, consistent with the ability of HCMV to control cellular and immunological functions. HCMV-induced LT biosynthesis in SMCs offers a molecular mechanism to explain HCMV-induced pathogenesis in inflammatory diseases.

Collaboration


Dive into the Afsar Rahbar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Stragliotto

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inti Peredo

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge