Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Afsar U. Ahmed is active.

Publication


Featured researches published by Afsar U. Ahmed.


International Review of Cell and Molecular Biology | 2009

Import of nuclear-encoded mitochondrial proteins: a cotranslational perspective.

Afsar U. Ahmed; Paul R. Fisher

A growing amount of evidence suggests that the cytosolic translation of nuclear-encoded mitochondrial proteins and their subsequent import into mitochondria are tightly coupled in a process termed cotranslational import. In addition to the original posttranslational view of mitochondrial protein import, early literature also provides both in vitro and in vivo experimental evidence supporting the simultaneous existence of a cotranslational protein-import mechanism in mitochondria. Recent investigations have started to reveal the cotranslational import mechanism which is initiated by transporting either a translation complex or a translationally competent mRNA encoding a mitochondrial protein to the mitochondrial surface. The intracellular localization of mRNA to the mitochondrial surface has emerged as the latest addition to our understanding of mitochondrial biogenesis. It is mediated by targeting elements within the mRNA molecule in association with potential mRNA-binding proteins.


Journal of Biological Chemistry | 2014

Integrin-linked Kinase Modulates Lipopolysaccharide- and Helicobacter pylori-induced Nuclear Factor κB-activated Tumor Necrosis Factor-α Production via Regulation of p65 Serine 536 Phosphorylation

Afsar U. Ahmed; Soroush T. Sarvestani; Michael P. Gantier; Bryan R. G. Williams

Background: Aberrantly elevated integrin-linked kinase (ILK) activity is associated with inflammatory diseases and tumors. Results: In response to bacterial stimulus and infection, ILK modulates pro-inflammatory cytokine TNF-α production and activates nuclear factor κB signaling via p65 Ser-536 phosphorylation. Conclusion: ILK promotes pro-inflammatory signaling during immune responses to diverse stimuli. Significance: ILK is a potential therapeutic target for inflammatory diseases. Integrin-linked kinase (ILK) is a ubiquitously expressed and highly conserved serine-threonine protein kinase that regulates cellular responses to a wide variety of extracellular stimuli. ILK is involved in cell-matrix interactions, cytoskeletal organization, and cell signaling. ILK signaling has also been implicated in oncogenesis and progression of cancers. However, its role in the innate immune system remains unknown. Here, we show that ILK mediates pro-inflammatory signaling in response to lipopolysaccharide (LPS). Pharmacological or genetic inhibition of ILK in mouse embryonic fibroblasts and macrophages selectively blocks LPS-induced production of the pro-inflammatory cytokine tumor necrosis factor α (TNF-α). ILK is required for LPS-induced activation of nuclear factor κB (NF-κB) and transcriptional induction of TNF-α. The modulation of LPS-induced TNF-α synthesis by ILK does not involve the classical NF-κB pathway, because IκB-α degradation and p65 nuclear translocation are both unaffected by ILK inhibition. Instead, ILK is involved in an alternative activation of NF-κB signaling by modulating the phosphorylation of p65 at Ser-536. Furthermore, ILK-mediated alternative NF-κB activation through p65 Ser-536 phosphorylation also occurs during Helicobacter pylori infection in macrophages and gastric cancer cells. Moreover, ILK is required for H. pylori-induced TNF-α secretion in macrophages. Although ILK-mediated phosphorylation of p65 at Ser-536 is independent of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway during LPS stimulation, upon H. pylori infection this event is dependent on the PI3K/Akt pathway. Our findings implicate ILK as a critical regulatory molecule for the NF-κB-mediated pro-inflammatory signaling pathway, which is essential for innate immune responses against pathogenic microorganisms.


Eukaryotic Cell | 2006

Import-Associated Translational Inhibition: Novel In Vivo Evidence for Cotranslational Protein Import into Dictyostelium discoideum Mitochondria

Afsar U. Ahmed; Peter L. Beech; Sui T. Lay; Paul R. Gilson; Paul R. Fisher

ABSTRACT To investigate protein import into the mitochondria of Dictyostelium discoideum, green fluorescent protein (GFP) was fused as a reporter protein either to variable lengths of the N-terminal region of chaperonin 60 (the first 23, 40, 80, 97, and 150 amino acids) or to the mitochondrial targeting sequence of DNA topoisomerase II. The fusion proteins were expressed in AX2 cells under the actin-15 promoter. Fluorescence images of GFP transformants confirmed that Dictyostelium chaperonin 60 is a mitochondrial protein. The level of the mitochondrially targeted GFP fusion proteins was unexpectedly much lower than the nontargeted (cytoplasmic) forms. The distinction between targeted and nontargeted protein activities was investigated at both the transcriptional and translational levels in vivo. We found that targeting GFP to the mitochondria results in reduced levels of the fusion protein even though transcription of the fusion gene and the stability of the protein are unaffected. [35S]methionine labeling and GFP immunoprecipitation confirmed that mitochondrially targeted GFP is translated at much slower rates than nontargeted GFP. The results indicate a novel phenomenon, import-associated translational inhibition, whereby protein import into the mitochondria limits the rate of translation. The simplest explanation for this is that import of the GFP fusion proteins occurs cotranslationally, i.e., protein synthesis and import into mitochondria are coupled events. Consistent with cotranslational import, Northern analysis showed that the GFP mRNA is associated with isolated mitochondria. This association occurred regardless of whether the GFP was fused to a mitochondrial leader peptide. However, the presence of an import-competent leader peptide stabilized the mRNA-mitochondria association, rendering it more resistant to extensive EDTA washing. In contrast with GFP, the mRNA of another test protein, aequorin, did not associate with the mitochondria, and its translation was unaffected by import of the encoded polypeptide into the mitochondria.


Frontiers of Biology in China | 2011

An overview of inflammation: mechanism and consequences

Afsar U. Ahmed

Inflammation is an essential response provided by the immune systems that ensures the survival during infection and tissue injury. Inflammatory responses are essential for the maintenance of normal tissue homeostasis. The molecular mechanism of inflammation is quite a complicated process which is initiated by the recognition of specific molecular patterns associated with either infection or tissue injury. The entire process of the inflammatory response is mediated by several key regulators involved in the selective expression of proinflammatory molecules. Prolonged inflammations are often associated with severe detrimental side effects on health. Alterations in inflammatory responses due to persistent inducers or genetic variations are on the rise over the last couple of decades, causing a variety of inflammatory diseases and pathophysiological conditions.


Cell Death & Differentiation | 2012

In mouse embryonic fibroblasts, neither caspase-8 nor cellular FLICE-inhibitory protein (FLIP) is necessary for TNF to activate NF-κB, but caspase-8 is required for TNF to cause cell death, and induction of FLIP by NF-κB is required to prevent it

Donia M. Moujalled; Wendy D. Cook; Josep M. Lluis; Nufail Khan; Afsar U. Ahmed; Bernard A. Callus; David L. Vaux

Binding of TNF to TNF receptor-1 can give a pro-survival signal through activation of p65/RelA NF-κB, but also signals cell death. To determine the roles of FLICE-inhibitory protein (FLIP) and caspase-8 in TNF-induced activation of NF-κB and apoptosis, we used mouse embryonic fibroblasts derived from FLIP and caspase-8 gene-deleted mice, and treated them with TNF and a smac-mimetic compound that causes degradation of cellular inhibitor of apoptosis proteins (cIAPs). In cells treated with smac mimetic, TNF and Fas Ligand caused wild-type and FLIP−/− MEFs to die, whereas caspase-8−/− MEFs survived, indicating that caspase-8 is necessary for death of MEFs triggered by these ligands when IAPs are degraded. By contrast, neither caspase-8 nor FLIP was required for TNF to activate p65/RelA NF-κB, because IκB was degraded, p65 translocated to the nucleus, and an NF-κB reporter gene activated normally in caspase-8−/− or FLIP−/− MEFs. Reconstitution of FLIP−/− MEFs with the FLIP isoforms FLIP-L, FLIP-R, or FLIP-p43 protected these cells from dying when treated with TNF or FasL, whether or not cIAPs were depleted. These results show that in MEFs, caspase-8 is necessary for TNF- and FasL-induced death, and FLIP is needed to prevent it, but neither caspase-8 nor FLIP is required for TNF to activate NF-κB.


Current Biology | 2009

CARP2 deficiency does not alter induction of NF-κB by TNFα

Afsar U. Ahmed; Maryline Moulin; Franck Coumailleau; W. Wei-Lynn Wong; Maria Miasari; Holly Carter; John Silke; Michel Cohen-Tannoudji; James E. Vince; David L. Vaux

TNFα can activate pathways leading to caspase-8-mediated apoptosis, as well as inflammatory pathways signaled by transcription factors. The adaptor protein RIP1 is a critical component for TNF receptor 1 (TNFR1)-mediated activation of NF-κB, because deletion of the gene encoding RIP1 in mice prevents induction of NF-κB by TNFα and causes severe runting with early postnatal lethality [1]. Recently, it has been proposed that caspase 8 and 10 associated RING protein-2 (CARP2, also named RIFIFYLIN/SAKURA) binds to the TNFR1 complex, leading to ubiquitylation and proteasome-mediated degradation of RIP1, thereby limiting the level of NF-κB activated by TNFα [2]. However, our experiments in mice lacking the Rififylin/Carp2 gene question this conclusion, because levels of RIP1 and induction of NF-κB by TNFα are normal in the absence of CARP2.


BMC Cell Biology | 2007

Filamin repeat segments required for photosensory signalling in Dictyostelium discoideum

Sarah J. Annesley; Esther Bandala-Sanchez; Afsar U. Ahmed; Paul R. Fisher

BackgroundFilamin is an actin binding protein which is ubiquitous in eukaryotes and its basic structure is well conserved – an N-terminal actin binding domain followed by a series of repeated segments which vary in number in different organisms. D. discoideum is a well established model organism for the study of signalling pathways and the actin cytoskeleton and as such makes an excellent organism in which to study filamin. Ddfilamin plays a putative role as a scaffolding protein in a photosensory signalling pathway and this role is thought to be mediated by the unusual repeat segments in the rod domain.ResultsTo study the role of filamin in phototaxis, a filamin null mutant, HG1264, was transformed with constructs each of which expressed wild type filamin or a mutant filamin with a deletion of one of the repeat segments. Transformants expressing the full length filamin to wild type levels completely rescued the phototaxis defect in HG1264, however if filamin was expressed at lower than wild type levels the phototaxis defect was not restored. The transformants lacking any one of the repeat segments 2–6 retained defective phototaxis and thermotaxis phenotypes, whereas transformants expressing filaminΔ1 exhibited a range of partial complementation of the phototaxis phenotype which was related to expression levels. Immunofluorescence microscopy showed that filamin lacking any of the repeat segments still localised to the same actin rich areas as wild type filamin. Ddfilamin interacts with RasD and IP experiments demonstrated that this interaction did not rely upon any single repeat segment or the actin binding domain.ConclusionThis paper demonstrates that wild type levels of filamin expression are essential for the formation of functional photosensory signalling complexes and that each of the repeat segments 2–6 are essential for filamins role in phototaxis. By contrast, repeat segment 1 is not essential provided the mutated filamin lacking repeat segment 1 is expressed at a high enough level. The defects in photo/thermosensory signal transduction caused by the absence of the repeats are due neither to mislocalisation of filamin nor to the loss of RasD recruitment to the previously described photosensory signalling complex.


Biomolecules | 2015

Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity.

Afsar U. Ahmed; Bryan R. G. Williams; Gregory E. Hannigan

Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding.


Journal of Immunology | 2017

Integrin-linked kinase expression in myeloid cells promotes inflammatory signaling during experimental colitis

Afsar U. Ahmed; Howard C.H. Yim; Mariah G. Alorro; Matthias Ernst; Bryan R. G. Williams

The pathology of inflammatory bowel diseases is driven by the inflammatory signaling pathways associated with mucosal epithelial damage. Myeloid cells are known to play an essential role in mediating epithelial inflammatory responses during injury. However, the precise role of these cells in stimulating intestinal inflammation and the subsequent tissue damage is unclear. In this article, we show that expression of integrin-linked kinase (ILK) in myeloid cells is critical for the epithelial inflammatory signaling during colitis induced by dextran sodium sulfate. Myeloid ILK (M-ILK) deficiency significantly ameliorates the pathology of experimental colitis. In response to dextran sodium sulfate, colonic infiltration of neutrophils and inflammatory cytokine production are impaired in M-ILK–deficient mice, and activation of epithelial NF-κB and PI3K signaling pathways are restricted by the M-ILK deficiency. In contrast, reduced epithelial damage in M-ILK–deficient mice is correlated with elevated levels of epithelial Stat3 activation and proliferation. Moreover, M-ILK–dependent inflammatory signaling in the mucosal epithelium can be therapeutically targeted by the pharmacological inhibition of ILK during experimental colitis. Collectively, these findings identify M-ILK as a critical regulator of epithelial inflammatory signaling pathways during colitis and, as a consequence, targeting M-ILK could provide therapeutic benefit.


Cytokine & Growth Factor Reviews | 2018

Mechanisms and consequences of constitutive activation of integrin-linked kinase in acute myeloid leukemia

Mohammed Alasseiri; Afsar U. Ahmed; Bryan R. G. Williams

Integrin-linked kinase (ILK) has emerged as a critical adaptor and mediator protein in cell signaling pathways that is commonly deregulated in acute myeloid leukemia (AML). This has led to the expectation that therapeutic targeting of ILK may be a useful option in treating leukemia. Although ILK can regulate many cellular processes, including cell differentiation, survival, migration, apoptosis and production of pro-inflammatory cytokines, its role in promoting AML is still unclear. However, its ability to mediate phosphorylation and regulate the important hematopoietic stem cell regulators protein kinase B (AKT) and glycogen synthase kinase-3β supports ILK as an attractive target for the development of novel anticancer therapeutics. In this review, we summarize the existing knowledge of ILK signaling and its impact on cytokines, paying particular attention to the relevance of ILK signaling in AML. We also discuss the rationale for targeting ILK in the treatment of AML and conclude with perspectives on the future of ILK-targeted therapy in AML.

Collaboration


Dive into the Afsar U. Ahmed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan R. G. Williams

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter L. Beech

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

David L. Vaux

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard A. Callus

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James E. Vince

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

John Silke

University of Melbourne

View shared research outputs
Researchain Logo
Decentralizing Knowledge