Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agata A. Exner is active.

Publication


Featured researches published by Agata A. Exner.


Molecular Pharmaceutics | 2010

Formulation and Characterization of Echogenic Lipid–Pluronic Nanobubbles

Tianyi M. Krupka; Luis Solorio; Robin E. Wilson; Hanping Wu; Nami Azar; Agata A. Exner

The advent of microbubble contrast agents has enhanced the capabilities of ultrasound as a medical imaging modality and stimulated innovative strategies for ultrasound-mediated drug and gene delivery. While the utilization of microbubbles as carrier vehicles has shown encouraging results in cancer therapy, their applicability has been limited by a large size which typically confines them to the vasculature. To enhance their multifunctional contrast and delivery capacity, it is critical to reduce bubble size to the nanometer range without reducing echogenicity. In this work, we present a novel strategy for formulation of nanosized, echogenic lipid bubbles by incorporating the surfactant Pluronic, a triblock copolymer of ethylene oxide copropylene oxide coethylene oxide into the formulation. Five Pluronics (L31, L61, L81, L64 and P85) with a range of molecular weights (M(w): 1100 to 4600 Da) were incorporated into the lipid shell either before or after lipid film hydration and before addition of perfluorocarbon gas. Results demonstrate that Pluronic-lipid interactions lead to a significantly reduced bubble size. Among the tested formulations, bubbles made with Pluronic L61 were the smallest with a mean hydrodynamic diameter of 207.9 +/- 74.7 nm compared to the 880.9 +/- 127.6 nm control bubbles. Pluronic L81 also significantly reduced bubble size to 406.8 +/- 21.0 nm. We conclude that Pluronic is effective in lipid bubble size control, and Pluronic M(w), hydrophilic-lipophilic balance (HLB), and Pluronic/lipid ratio are critical determinants of the bubble size. Most importantly, our results have shown that although the bubbles are nanosized, their stability and in vitro and in vivo echogenicity are not compromised. The resulting nanobubbles may be better suited for contrast enhanced tumor imaging and subsequent therapeutic delivery.


Journal of Controlled Release | 2010

Effect of injection site on in situ implant formation and drug release in vivo

Ravi Patel; Luis Solorio; Hanping Wu; Tianyi M. Krupka; Agata A. Exner

In situ forming drug delivery implants offer an attractive alternative to pre-formed implant devices for local drug delivery due to their ability to deliver fragile drugs, simple manufacturing process, and less invasive placement. However, the clinical translation of these systems has been hampered, in part, by poor correlation between in vitro and in vivo drug release profiles. To better understand this effect, the behavior of poly(D,l-lactide-co-glycolide) (PLGA) in situ forming implants was examined in vitro and in vivo after subcutaneous injection as well as injection into necrotic, non-necrotic, and ablated tumor. Implant formation was quantified noninvasively using an ultrasound imaging technique. Drug release of a model drug agent, fluorescein, was correlated with phase inversion in different environments. Results demonstrated that burst drug release in vivo was greater than in vitro for all implant formulations. Drug release from implants in varying in vivo environments was fastest in ablated tumor followed by implants in non-necrotic tumor, in subcutaneous tissue, and finally in necrotic tumor tissue with 50% of the loading drug mass released in 0.7, 0.9, 9.7, and 12.7h respectively. Implants in stiffer ablated and non-necrotic tumor tissue showed much faster drug release than implants in more compliant subcutaneous and necrotic tumor environments. Finally, implant formation examined using ultrasound confirmed that in vivo the process of precipitation (phase inversion) was directly proportional to drug release. These findings suggest that not only is drug release dependent on implant formation but that external environmental effects, such as tissue mechanical properties, may explain the differences seen between in vivo and in vitro drug release from in situ forming implants.


ACS Nano | 2013

Multimodal In Vivo Imaging Exposes the Voyage of Nanoparticles in Tumor Microcirculation

Randall Toy; Elliott Hayden; Andrew Camann; Zachary Berman; Peter Vicente; Emily Tran; Joseph D. Meyers; Jenna Pansky; Hanping Wu; Agata A. Exner; David L. Wilson; Ketan B. Ghaghada; Efstathios Karathanasis

Tumors present numerous biobarriers to the successful delivery of nanoparticles. Decreased blood flow and high interstitial pressure in tumors dictate the degree of resistance to extravasation of nanoparticles. To understand how a nanoparticle can overcome these biobarriers, we developed a multimodal in vivo imaging methodology, which enabled the noninvasive measurement of microvascular parameters and deposition of nanoparticles at the microscopic scale. To monitor the spatiotemporal progression of tumor vasculature and its vascular permeability to nanoparticles at the microcapillary level, we developed a quantitative in vivo imaging method using an iodinated liposomal contrast agent and a micro-CT. Following perfusion CT for quantitative assessment of blood flow, small animal fluorescence molecular tomography was used to image the in vivo fate of cocktails containing liposomes of different sizes labeled with different NIR fluorophores. The animal studies showed that the deposition of liposomes depended on local blood flow. Considering tumor regions of different blood flow, the deposition of liposomes followed a size-dependent pattern. In general, the larger liposomes effectively extravasated in fast flow regions, while smaller liposomes performed better in slow flow regions. We also evaluated whether the tumor retention of nanoparticles is dictated by targeting them to a receptor overexpressed by the cancer cells. Targeting of 100 nm liposomes showed no benefits at any flow rate. However, active targeting of 30 nm liposomes substantially increased their deposition in slow flow tumor regions (∼12-fold increase), which suggested that targeting prevented the washout of the smaller nanoparticles from the tumor interstitium back to blood circulation.


Expert Opinion on Drug Delivery | 2008

Drug-eluting polymer implants in cancer therapy.

Agata A. Exner; Gerald M. Saidel

Background: Drug-eluting polymer implants present a compelling parenteral route of administration for cancer chemotherapy. With potential for minimally invasive, image-guided placement and highly localized drug release, these delivery systems are playing an increasingly important role in cancer management. This is particularly true as the use of labile proteins and other bioactive molecules is likely to increase in the upcoming years. Objective: In this review, we present the current trends in the application of Pre-formed and in situ-forming systems as drug-eluting implants for cancer chemotherapy. Methods: We outline the clinically available options as well as up-and-coming technologies and their advantages and challenges. We also describe ongoing related innovations with image-guided drug delivery, mathematical modeling of implanted delivery systems and implanted drug delivery in combination with other therapies. Results/conclusion: Whether used alone or combined with other minimally invasive procedures, drug-eluting polymeric implants will play a significant role in the future of cancer management.


Journal of Controlled Release | 2010

Noninvasive Characterization of In situ Forming Implants Using Diagnostic Ultrasound

Luis Solorio; Brett M. Babin; Ravi Patel; Justyna Mach; Nami Azar; Agata A. Exner

In situ forming drug delivery systems provide a means by which a controlled release depot can be physically inserted into a target site without the use of surgery. The release rate of drugs from these systems is often related to the rate of implant formation. Currently, only a limited number of techniques are available to monitor phase inversion, and none of these methods can be used to visualize the process directly and noninvasively. In this study, diagnostic ultrasound was used to visualize and quantify the process of implant formation in a phase inversion based system both in vitro and in vivo. Concurrently, sodium fluorescein was used as a mock drug to evaluate the drug release profiles and correlate drug release and implant formation processes. Implants comprised of three different molecular weight poly(lactic-co-glycolic acid) (PLGA) polymers dissolved in 1-methyl-2-pyrrolidinone (NMP) were studied in vitro and a 29 kDa PLGA solution was evaluated in vivo. The implants were encapsulated in a 1% agarose tissue phantom for five days, or injected into a rat subcutaneously and evaluated for 48 h. Quantitative measurements of the gray-scale value (corresponding to the rate of implant formation), swelling, and precipitation were evaluated using image analysis techniques, showing that polymer molecular weight has a considerable effect on the swelling and formation of the in situ drug delivery depots. A linear correlation was also seen between the in vivo release and depot formation (R(2)=0.93). This study demonstrates, for the first time, that ultrasound can be used to noninvasively and nondestructively monitor and evaluate the phase inversion process of in situ forming drug delivery implants, and that the formation process can be directly related to the initial phase of drug release dependent on this formation.


Journal of Biomedical Materials Research Part A | 2010

Characterization of formulation parameters affecting low molecular weight drug release from in situ forming drug delivery systems.

Ravi Patel; Angela N. Carlson; Luis Solorio; Agata A. Exner

In situ forming implants (ISFI) have shown promise in delivering adjuvant chemotherapy following minimally invasive cancer therapies such as thermal ablation of tumors. Although ISFI systems have been thoroughly investigated for delivery of high molecular weight (Mw) therapeutics, little research has been conducted to optimize their design for delivery of low Mw drugs. This study examined the effect of varying the formulation components on the low Mw drug release profile from a ISFI consisting of poly(D,L-lactide-co-glycolide) (PLGA), fluorescein (model drug), and excipient dissolved in 1-methyl-2-pyrrolidinone (NMP). Effects of varying PLGA Mw, excipient concentration, and drug loading were studied. Additionally, solubility studies were conducted to determine the critical water concentration required for phase inversion. Results demonstrated that PLGA Mw was the most significant factor in modulating low Mw drug release from the ISFI systems. ISFI formulations comprised of a low Mw (16 kDa) PLGA showed a significantly (p < 0.05) lower burst release (after 24 h), 28.2 +/- 0.5%, compared with higher Mw PLGA (60 kDa), 55.1 +/- 3.1%. Critical water concentration studies also demonstrated that formulations with lower Mw PLGA had increased solubility in water and may thus require more time to phase invert and release the drug.


Investigative Radiology | 2006

Injectable polymer depot combined with radiofrequency ablation for treatment of experimental carcinoma in rat.

Tianyi M. Krupka; Brent D. Weinberg; Nicholas P. Ziats; John R. Haaga; Agata A. Exner

Objective:The purpose of this study was to investigate whether an intralesional chemotherapy depot with or without a chemosensitizer could improve the efficacy of radiofrequency (RF) ablation in treatment of experimental carcinoma in rats. Materials and Methods:Eighteen BD-IX rats were inoculated with bilateral subcutaneous tumors via injection of DHD/K12TRb rat colorectal carcinoma cells in suspension. Four weeks after inoculation, one tumor in each rat was treated with RF ablation at 80°C for 2 minutes and the other with RF ablation followed by intralesional chemotherapy with carboplatin. The drug was administered via 2 different in situ-forming poly(D,L-lactide-coglycolide) (PLGA) depot formulations either with or without a chemosensitizer. Treatment efficacy was assessed by comparing the change in tumor diameter compared with control, percent of coagulation necrosis and a rating of treatment completeness. Results:Tumors treated with ablation and carboplatin + sensitizer (n = 9) showed a diameter decrease of 49.4 ± 24.5% at the end point relative to ablation control, while those treated with ablation and carboplatin only (n = 8) showed a 7.1 ± 12.6% decrease. Use of sensitizer also showed increased tissue necrosis (81.9 ± 9.7% compared with 68.7 ± 26.7% for ablation only) and double the number of complete treatments (6/9 or 66.7%) compared with ablation control (3/9 or 33.3%). Conclusions:From these results, we conclude that intralesional administration of a carboplatin and sensitizer-loaded polymer depot after RF ablation has the potential to improve the outcome of ablation by increasing effectiveness of local adjuvant chemotherapy in preventing progression of tumor unaffected by the ablation treatment.


Journal of Controlled Release | 2002

Combined modeling and experimental approach for the development of dual-release polymer millirods

Feng Qian; Gerald M. Saidel; Damon Sutton; Agata A. Exner; Jinming Gao

This paper describes a combined modeling and experimental approach for the design and development of a polymer device to provide local drug therapy to thermally ablated solid tumors. The polymer device, in the shape of cylindrical millirod, will be implanted via image-guided procedures into the center of the ablated tumor. Drug released from the millirod aims to eliminate residual cancer cells at the boundary of the normal and ablated tissue following thermal ablation to provide an effective treatment of the total tumor volume. The design of the millirod release kinetics is based on a mathematical model of drug transport in the ablated tumor and the surrounding normal tissue. The optimal release kinetics consists of a dual-release process-a burst release followed by sustained release-to provide the most optimal drug pharmacokinetics at the ablation boundary. Model analysis leads to a quantitative correlation of burst dose and release rates to the ablation size and the drug concentration at the ablation boundary. A three-layer polymer millirod is produced by a dip-coating method, and in vitro study demonstrates the dual-release kinetics in which a burst release occurs within 2 h followed by a sustained release over 7 -10 days. Independent control of the burst and sustained release rates is achieved by varying the structural composition of the outer and middle layers of the millirods, respectively. Results from this study provide the rational basis and experimental feasibility of dual-release millirods for further efficacy studies in solid tumors.


Theranostics | 2012

Noninvasive Characterization of the Effect of Varying PLGA Molecular Weight Blends on In Situ Forming Implant Behavior Using Ultrasound Imaging

Luis Solorio; Alexander M. Olear; Jesse I. Hamilton; Ravi Patel; Ashlei C. Beiswenger; Jon E. Wallace; Haoyan Zhou; Agata A. Exner

In situ forming implants (ISFIs) have shown promise in drug delivery applications due to their simple manufacturing and minimally invasive administration. Precise, reproducible control of drug release from ISFIs is essential to their successful clinical application. This study investigated the effect of varying the molar ratio of different molecular weight (Mw) poly(D,L-lactic-co-glycolic acid) (PLGA) polymers within a single implant on the release of a small Mw mock drug (sodium fluorescein) both in vitro and in vivo. Implants were formulated by dissolving three different PLGA Mw (15, 29, and 53kDa), as well as three 1:1 molar ratio combinations of each PLGA Mw in 1-methyl-2-pyrrolidinone (NMP) with the mock drug fluorescein. Since implant morphology and microstructure during ISFI formation and degradation is a crucial determinant of implant performance, and the rate of phase inversion has been shown to have an effect on the implant microstructure, diagnostic ultrasound was used to noninvasively quantify the extent of phase inversion and swelling behavior in both environments. Implant erosion, degradation, as well as the in vitro and in vivo release profiles were also measured using standard techniques. A non-linear mathematical model was used to correlate the drug release behavior with polymer phase inversion, with all formulations yielding an R2 value greater than 0.95. Ultrasound was also used to create a 3D image reconstruction of an implant over a 12 day span. In this study, swelling and phase inversion were shown to be inversely related to the polymer Mw with 53kDa polymer implants increasing at an average rate of 9.4%/day compared with 18.6%/day in the case of the 15 kDa PLGA. Additionally the onset of erosion, complete phase inversion, and degradation facilitated release required 9 d for 53 kDa implants, while these same processes began 3 d after injection into PBS with the 15 kDa implants. It was also observed that PLGA blends generally had intermediate properties when compared to pure polymer formulations. However, release profiles from the blend formulations were governed by a more complex set of processes and were not simply averages of release profiles from the pure polymers preparations. This study demonstrated that implant properties such as phase inversion, swelling and drug release could be tailored to by altering the molar ratio of the polymers used in the depot formulation.


Radiology | 2013

Real-time Monitoring of Radiofrequency Ablation and Postablation Assessment: Accuracy of Contrast-enhanced US in Experimental Rat Liver Model

Hanping Wu; Luke R. Wilkins; Nicholas P. Ziats; John R. Haaga; Agata A. Exner

PURPOSE To examine the accuracy of the unenhanced zone at contrast material-enhanced ultrasonography (US) in predicting coagulative necrosis during and 21 days after radiofrequency (RF) ablation by using radiologic-pathologic comparison. MATERIALS AND METHODS Animal studies were approved by the Institutional Animal Care and Use Committee. The livers of 28 rats underwent US-guided RF ablation. In four animals, contrast-enhanced US was performed during ablation and 2 hours and 2, 7, 14, and 21 days after ablation. The unenhanced zone area on US images was measured. DiI-labeled microbubbles were administered during ablation at 2, 4, and 6 minutes or at 2 hours and 2, 7, 14, and 21 days after ablation in the remaining 24 animals (n = 3 at each time point). One minute later, the animal was euthanized, and the ablated liver was harvested. Tissue samples were imaged to quantify total fluorescence, and NADH staining was performed on the same slice. Hematoxylin-eosin staining was also performed. The findings on fluorescence images, NADH-stained images, and hematoxylin-eosin-stained images were compared. The areas of DiI bubble-negative zones, NADH-negative zones, and lightly NADH-staining zones were measured. Data were analyzed by using one-way analysis of variance. RESULTS The area of the unenhanced zone on contrast-enhanced US images increased during RF ablation and reached a maximum within 2 days after ablation. At histopathologic examination, a transition zone manifested adjacent to the coagulation zone until 2 days after ablation. The DiI-bubble negative zone on fluorescence images and the damaged zone (transition zone plus coagulation zone) on NADH-stained images increased rapidly within 2 hours after ablation, then slowly reached the maximum on day 2. The ratios of the mean areas of these two zones at hour 2 to those at day 2 were 94.6% and 95.6%, respectively. High uniformity between the damaged zone on NADH-stained images and the DiI bubble-negative zone on fluorescence images was noted at all time points. CONCLUSION The temporary transition zone in NADH staining is partially damaged and should transition to nonviability 2 days after ablation. These results demonstrate that contrast-enhanced US can help delineate the maximum area of cell damage (to within 5% of the maximum) as early as 2 hours after ablation. Contrast-enhanced US may be a simple and accurate tool for monitoring the effects of RF ablation and quantifying the size of thermal damage after treatment.

Collaboration


Dive into the Agata A. Exner's collaboration.

Top Co-Authors

Avatar

Hanping Wu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Christopher Hernandez

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Tianyi M. Krupka

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Luis Solorio

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

John R. Haaga

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Haoyan Zhou

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Ravi Patel

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Brent D. Weinberg

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Reshani H. Perera

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Jinming Gao

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge