Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agata Borowik is active.

Publication


Featured researches published by Agata Borowik.


Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2016

Enzyme activity and microorganisms diversity in soil contaminated with the Boreal 58 WG herbicide

Jan Kucharski; Monika Tomkiel; Małgorzata Baćmaga; Agata Borowik; Jadwiga Wyszkowska

ABSTRACT Next-generation herbicides are relatively safe when used properly, but the recommended rates are relatively low, which can lead to overdosing. This study evaluated the responses of soil-dwelling microorganisms and soil enzymes to contamination with the Boreal 58 WG herbicide. The analyzed product contains active ingredients flufenacet and isoxaflutole. All tests were performed under laboratory conditions. The analyzed material was sandy clay. Boreal 58 WG was introduced to soil in four doses. Soil without the addition of the herbicide served as the control. The soil was mixed with the tested herbicide, and its moisture content was maintained at 50% of capillary water capacity. Biochemical and microbiological analyses were performed on experimental days 0, 20, 40, 80 and 160. Accidental contamination of soil with the Boreal 58 WG herbicide led to a relatively minor imbalance in the soil microbiological and biochemical profile. The herbicide dose influenced dehydrogenase activity in only 0.84%, urease activity in 2.04%, β-glucosidase activity in 8.26%, catalase activity in 12.40%, arylsulfatase activity in 12.54%, acid phosphatase activity in 42.11%, numbers of organotrophic bacteria in 18.29%, actinomyces counts in 1.31% and fungi counts in 6.86%.


Plant Soil and Environment | 2016

Response of Avena sativa, microorganisms and enzymes to contamination of soil with diesel oil

Jadwiga Wyszkowska; Agata Borowik; Jan Kucharski

The scale of the impact of petroleum products on the natural environment is still difficult to determine. This is why it was decided to conduct tests, under the conditions of a pot experiment, for the effects of diesel oil (0, 4, and 8 mL/kg dry matter of soil) on the yield of oat, content of macroelements, as well as the microbiological, biochemical, physicochemical and chemical properties of the soil. The study results showed that diesel oil had an adverse effect on the growth and development of oat, and contents of nitrogen, sodium, calcium and magnesium in the above-ground parts of oat. Diesel oil increased the concentration of the following substances in the soil: naphthalene, phenanthrene, anthracene, benz[a]anthracene, chrysene, benzo[a]fluoranthene, benzo[a]pyrene and benzo[ghi]perylene, organic carbon, total nitrogen, and available potassium, while it decreased the concentration of available phosphorus and magnesium in the soil. Changes in the physicochemical properties of the soil had an unfavourable effect on the microbiological and biochemical properties. As regards the 7 tested enzymes, the most sensitive to diesel oil was catalase, and the least sensitive ones were s-glucosidase and dehydrogenases. As for 12 various tested microorganisms, bacteria of the Azotobacter genus exhibited the highest resistance, while copiotrophic bacteria the lowest.


Plant Soil and Environment | 2016

Soil moisture as a factor affecting the microbiological and biochemical activity of soil.

Agata Borowik; Jadwiga Wyszkowska

The purpose of this research has been to identify relationships between soil moisture and the growth and development of microorganisms, their diversity and the activity of soil enzymes. Four soils with different texture were analysed. Air-dry soils were watered up to the moisture content corresponding to 20, 40 and 60% of the maximum water capacity (MWC) and subsequently were submitted to determinations of the counts of soil microorganisms, colony development index and ecophysiological diversity index for bacteria, actinomycetes and fungi. In addition, the response of seven soil enzymes to soil humidity was examined. It was found that the most optimum soil moisture for the development of organotrophic bacteria was the one at the level of 20% of MWC. For Azotobacter spp. bacteria and actinomycetes, the 40% MWC soil moisture level was optimum, while fungi developed the best at the soil moisture level of 60% of MWC. In turn, the activity of soil dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, β-glucosidase and arylsulfatase was the highest in soil with 20% of MWC. The principal component analysis showed that the soil moisture determined the microbial and biochemical soil activity to a much lesser degree than did the soil type.


International Agrophysics | 2016

Impact of temperature on the biological properties of soil

Agata Borowik; Jadwiga Wyszkowska

Abstract The aim of the study was to determine the response of soil microorganisms and enzymes to the temperature of soil. The effect of the temperatures: 5, 10, 15, 20, and 25°C on the biological properties of soil was investigated under laboratory conditions. The study was performed using four different soils differing in their granulometric composition. It was found that 15°C was the optimal temperature for the development of microorganisms in soil. Typically, in the soil, the highest activity of dehydrogenases was observed at 10-15°C, catalase and acid phosphatase – at 15°C, alkaline phosphatase at 20°C, urease and β-glucosidase at 25°C. The highest colony development index for heterotrophic bacteria was recorded in soils incubated at 25°C, while for actinomycetes and fungi at 15°C. The incubation temperature of soil only slightly changed the ecophysiological variety of the investigated groups of microorganisms. Therefore, the observed climate changes might have a limited impact on the soil microbiological activity, because of the high ability of microorganisms to adopt. The response of soil microorganisms and enzymes was more dependent on the soil granulometric composition, organic carbon, and total nitrogen than on its temperature.


Archives of Environmental Protection | 2015

The effect of carfentrazone-ethyl on soil microorganisms and soil enzymes activity / Wpływ karfentrazonu etylu na mikroorganizmy i aktywność enzymów glebowych

Monika Tomkiel; Małgorzata Baćmaga; Jadwiga Wyszkowska; Jan Kucharski; Agata Borowik

Abstract The aim of this study was to determine the effect of carfentrazone-ethyl (CE) doses of 0.265, 5.280, 10.560, 21.180, 42.240 μg kg-1 soil DM on fungi, Acnomycetes, organotrophic bacteria, total oligotrophic bacteria and spore-forming oligotrophic bacteria, and on the activity of dehydrogenases, catalase, urease, alkaline phosphatase, acid phosphatase, arylsulfatase and β-glucosidase. Carfentrazone-ethyl had a stimulating effect on total oligotrophic bacteria and organotrophic bacteria, but it inhibited the growth of Azotobacter, fungi, spore-forming oligotrophic bacteria and Actinomycetes. The analyzed substance modified the structure of soil microbial communities, and it induced the most profound changes in fungi. The highest values of the colony development (CD) index and the eco-physiological (EP) index were observed in organotrophic bacteria. The optimal dose of carfentrazone-ethyl stimulated the activity of dehydrogenases, catalase, urease, alkaline phosphatase, acid phosphatase and β-glucosidase, but it had no effect on arylsulfatase. The highest doses of the analyzed substance inhibited the activity of dehydrogenases (reduction from 11.835 to 11.381 μmol TPF), urease (reduction from 0.545 to 0.500 mmol N-NH4) and arylosulfatase (reduction from 0.210 to 0.168 mmol PNP). Dehydrogenases were most resistant to CE, whereas acid phosphatase and arylsulfatase were least resistant to the analyzed compound Streszczenie W pracy określono wpływ karfentrazonu etylu zaaplikowanego w dawkach 0,265, 5,280, 10,560, 21,180, 42,2 40 μg kg-1s.m. gleby na grzyby, promieniowce, bakterie organotrofi czne, oligotrofi czne ogółem i oligotrofi czne przetrwalnikujące oraz aktywność dehydrogenaz, katalazy, ureazy, fosfatazy alkalicznej, fosfatazy kwaśnej, arylosulfatazy i β-glukozydazy. W wyniku badań stwierdzono stymulujące działanie karfentrazonu etylu na bakterie oligotrofi czne ogółem i bakterie organotrofi czne, natomiast inhibicyjne na Azotobacter, grzyby, bakterie oligotrofi czne przetrwalnikujące oraz promieniowce. Preparat ten zmieniał strukturę zespołu drobnoustrojów. Największe zmiany wywoływał u grzybów. Najwyższe wartości wskaźników rozwoju kolonii (CD) i ekofi zjologicznej różnorodności (EP) odnotowano u bakterii organotrofi cznych. Karfentrazon etylu w dawce optymalnej zwiększał aktywność dehydrogenaz katalazy, ureazy, fosfatazy alkalicznej, fosfatazy kwaśnej i β-glukozydazy, a nie oddziaływał na arylosulfatazę, natomiast najwyższe dawki zmniejszały aktywność dehydrogenaz (obniżenie z 11,835 do 11,381 μmol TPF), ureazy (obniżenie z 0,545 do 0,500 mmol N-NH4) i arylosulfatazy (obniżenie z 0,210 do 0,168 mmol PNP). Najbardziej opornymi enzymami na działanie KE okazały się dehydrogenazy, a najmniej fosfataza kwaśna i arylosulfataza.


Frontiers in Microbiology | 2017

Functional Diversity of Fungal Communities in Soil Contaminated with Diesel Oil

Agata Borowik; Jadwiga Wyszkowska; Karolina Oszust

The widespread use and consumption of crude oil draws the public’s attention to the fate of petroleum hydrocarbons in the environment, as they can permeate the soil environment in an uncontrollable manner. Contamination of soils with petroleum products, including diesel oil (DO), can cause changes in the microbiological soil properties. The effect of diesel oil on the functional diversity of fungi was tested in a model experiment during 270 days. Fungi were isolated from soil and identified. The functional diversity of fungal communities was also determined. Fungi were identified with the MALDI-TOF method, while the functional diversity was determined using FF-plates made by Biolog®, with 95 carbon sources. Moreover, the diesel oil degradation dynamics was assessed. The research showed that soil contaminated with diesel oil is characterized by a higher activity of oxireductases and a higher number of fungi than soil not exposed to the pressure of this product. The DO pollution has an adverse effect on the diversity of fungal community. This is proved by significantly lower values of the Average Well-Color Development, substrates Richness (R) and Shannon–Weaver (H) indices at day 270 after contamination. The consequences of DO affecting soil not submitted to remediation are persistent. After 270 days, only 64% of four-ringed, 28% of five-ringed, 21% of 2–3-ringed and 16% of six-ringed PAHs underwent degradation. The lasting effect of DO on communities of fungi led to a decrease in their functional diversity. The assessment of the response of fungi to DO pollution made on the basis of the development of colonies on Petri dishes [Colony Development (CD) and Eco-physiological Diversity (EP) indices] is consistent with the analysis based on the FF MicroPlate system by Biolog®. Thus, a combination of the FF MicroPlate system by Biolog® with the simultaneous calculation of CD and EP indices alongside the concurrent determination of the content of PAHs and activity of oxireductases provides an opportunity to achieve relatively complete characterization of the consequences of a long-term impact of diesel oil on soil fungi.


Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2016

Implication of zinc excess on soil health

Jadwiga Wyszkowska; Edyta Boros-Lajszner; Agata Borowik; Małgorzata Baćmaga; Jan Kucharski; Monika Tomkiel

ABSTRACT This study was undertaken to evaluate zincs influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl – 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn2+ kg−1 in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn2+ kg−1.


Ecological Chemistry and Engineering S-chemia I Inzynieria Ekologiczna S | 2015

Response of actinomycetes, phosphatases and urease to soil contamination with herbicides

Małgorzata Baćmaga; Jan Kucharski; Jadwiga Wyszkowska; Monika Tomkiel; Agata Borowik

Abstract A laboratory experiment was completed to determine the effect of the herbicides Alister Grande 190 OD, Fuego 500 SC and Lumax 537.5 SE on counts of actinomycetes as well as the activity of enzymes and their resistance to herbicides. Sandy loam was mixed with appropriate doses of the herbicides, such as: 0 - the control, 1 - technological dose and doses 20-, 40-, 80- and 160-fold higher than recommended. On day 20, 40, 80 and 160, counts of actinomycetes and activity of urease, acid phosphatase and alkaline phosphatase were determined. For 160 days, soil was incubated at 25°C and its moisture content was maintained on a constant level equal 50% of water capillary capacity. On days 20 and 80 of the experiment, the ecophysiological (EP) and colony development (CD) indices were computed. Additionally, the resistance (RS) of enzymes to the herbicides was assessed on day 20 and their resilience index (RL) was determined on day 160. It has been found out that soil contamination with herbicides contributed to elevated counts of actinomycetes. The highest number of these microorganisms was observed in soil with Lumax 537.5 SE, and the lowest one appeared in soil with Alister Grande 190 OD. The CD for actinomycetes was the highest in treatments with Fuego 500 SC and the highest EP was determined in soil with Alister Grande 190 OD. Application of the herbicides in doses from 20- to 160-fold higher than recommended by the manufacturer significantly increased the activity of acid and alkaline phosphatases. With respect to the activity of urease, the herbicides produced variable effects. The strongest inhibitory effect on the activity of urease was produced by Fuego 500 SC, which reduced the activity of this enzyme by 13.39% when added to soil in a dose exceeding by 160-fold the recommended rate. The RS of the enzymes to the herbicides ranged from 0.461 to 0.955. Urease was the most tolerant to soil contamination with the herbicides.


Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2018

The sensitivity of soil enzymes, microorganisms and spring wheat to soil contamination with carfentrazone-ethyl

Monika Tomkiel; Małgorzata Baćmaga; Agata Borowik; Jadwiga Wyszkowska; Jan Kucharski

ABSTRACT Herbicides pose a significant threat to the natural environment, in particular in soils that are most exposed to plant protection agents. Prolonged herbicide use leads to changes in soil metabolism and decreases soil productive potential. In this study, the influence of carfentrazone-ethyl (CE) on the microbiological and biochemical properties of soil and the yield of Triticum aestivum L. was evaluated. Carfentrazone-ethyl was applied to sandy loam (pHKCl – 7.0) in doses of 0.000, 0.264, 5.280, 10.56, 21.18, 42.24, 84.48 and 168.96 µg kg−1 DM soil. Soil samples were subjected to microbiological and biochemical analyses on experimental days 30 and 60. Carfentrazone-ethyl disrupted the biological equilibrium in soil by decreasing the abundance and biodiversity of soil-dwelling microorganisms, the activity of soil enzymes, the values of the biochemical activity indicator and spring wheat yields. Carfentrazone-ethyl had the most adverse effects when applied in doses many fold higher than those recommended by the manufacturer. The toxic effects of CE were also determined by its soil retention time. Soil treated with CE was characterized by higher counts of oligotrophic bacteria, organotrophic bacteria, bacteria of the genus Azotobacter, actinomycetes and fungi on day 60, and spore-forming oligotrophic bacteria on day 30. The activity of dehydrogenases, urease, alkaline phosphatase and β-glucosidase was higher on day 30 than on day 60.


Journal of Elementology | 2012

Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes

Jadwiga Wyszkowska; Agata Borowik; M. Kucharski; Jan Kucharski

Collaboration


Dive into the Agata Borowik's collaboration.

Top Co-Authors

Avatar

Jadwiga Wyszkowska

University of Warmia and Mazury in Olsztyn

View shared research outputs
Top Co-Authors

Avatar

Jan Kucharski

University of Warmia and Mazury in Olsztyn

View shared research outputs
Top Co-Authors

Avatar

Monika Tomkiel

University of Warmia and Mazury in Olsztyn

View shared research outputs
Top Co-Authors

Avatar

Małgorzata Baćmaga

University of Warmia and Mazury in Olsztyn

View shared research outputs
Top Co-Authors

Avatar

Edyta Boros-Lajszner

University of Warmia and Mazury in Olsztyn

View shared research outputs
Top Co-Authors

Avatar

Karolina Oszust

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Grażyna Kaczyńska

University of Warmia and Mazury in Olsztyn

View shared research outputs
Top Co-Authors

Avatar

Mirosław Wyszkowski

University of Warmia and Mazury in Olsztyn

View shared research outputs
Researchain Logo
Decentralizing Knowledge