Agata Burian
University of Silesia in Katowice
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agata Burian.
Cell | 2012
Magalie Uyttewaal; Agata Burian; Karen Alim; Benoit Landrein; Dorota Borowska-Wykręt; Annick Dedieu; Alexis Peaucelle; Michał Ludynia; Jan Traas; Arezki Boudaoud; Dorota Kwiatkowska; Olivier Hamant
The presence of diffuse morphogen gradients in tissues supports a view in which growth is locally homogenous. Here we challenge this view: we used a high-resolution quantitative approach to reveal significant growth variability among neighboring cells in the shoot apical meristem, the plant stem cell niche. This variability was strongly decreased in a mutant impaired in the microtubule-severing protein katanin. Major shape defects in the mutant could be related to a local decrease in growth heterogeneity. We show that katanin is required for the cells competence to respond to the mechanical forces generated by growth. This provides the basis for a model in which microtubule dynamics allow the cell to respond efficiently to mechanical forces. This in turn can amplify local growth-rate gradients, yielding more heterogeneous growth and supporting morphogenesis.
Nature Protocols | 2014
Arezki Boudaoud; Agata Burian; Dorota Borowska-Wykręt; Magalie Uyttewaal; Roman Wrzalik; Dorota Kwiatkowska; Olivier Hamant
Cell biology heavily relies on the behavior of fibrillar structures, such as the cytoskeleton, yet the analysis of their behavior in tissues often remains qualitative. Image analysis tools have been developed to quantify this behavior, but they often involve an image pre-processing stage that may bias the output and/or they require specific software. Here we describe FibrilTool, an ImageJ plug-in based on the concept of nematic tensor, which can provide a quantitative description of the anisotropy of fiber arrays and their average orientation in cells, directly from raw images obtained by any form of microscopy. FibrilTool has been validated on microtubules, actin and cellulose microfibrils, but it may also help analyze other fibrillar structures, such as collagen, or the texture of various materials. The tool is ImageJ-based, and it is therefore freely accessible to the scientific community and does not require specific computational setup. The tool provides the average orientation and anisotropy of fiber arrays in a given region of interest (ROI) in a few seconds.
eLife | 2015
Pierre Barbier de Reuille; Anne-Lise Routier-Kierzkowska; Daniel Kierzkowski; George W. Bassel; Thierry Schüpbach; Gerardo Tauriello; Namrata Bajpai; Sören Strauss; Alain Weber; Annamaria Kiss; Agata Burian; Hugo Hofhuis; Aleksandra Sapala; Marcin Lipowczan; Maria Heimlicher; Sarah Robinson; Emmanuelle Bayer; Konrad Basler; Petros Koumoutsakos; Adrienne H. K. Roeder; Tinri Aegerter-Wilmsen; Naomi Nakayama; Miltos Tsiantis; Angela Hay; Dorota Kwiatkowska; Ioannis Xenarios; Cris Kuhlemeier; Richard S. Smith
Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX (www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The softwares modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth. DOI: http://dx.doi.org/10.7554/eLife.05864.001
Journal of Experimental Botany | 2013
Sarah Robinson; Agata Burian; Etienne Couturier; Benoit Landrein; Marion Louveaux; Enrique D. Neumann; Alexis Peaucelle; Alain Weber; Naomi Nakayama
Morphogenesis does not just require the correct expression of patterning genes; these genes must induce the precise mechanical changes necessary to produce a new form. Mechanical characterization of plant growth is not new; however, in recent years, new technologies and interdisciplinary collaborations have made it feasible in young tissues such as the shoot apex. Analysis of tissues where active growth and developmental patterning are taking place has revealed biologically significant variability in mechanical properties and has even suggested that mechanical changes in the tissue can feed back to direct morphogenesis. Here, an overview is given of the current understanding of the mechanical dynamics and its influence on cellular and developmental processes in the shoot apex. We are only starting to uncover the mechanical basis of morphogenesis, and many exciting questions remain to be answered.
Journal of Experimental Botany | 2013
Agata Burian; Michał Ludynia; Magalie Uyttewaal; Jan Traas; Arezki Boudaoud; Olivier Hamant; Dorota Kwiatkowska
Cortical microtubules (CMTs) are often aligned in a particular direction in individual cells or even in groups of cells and play a central role in the definition of growth anisotropy. How the CMTs themselves are aligned is not well known, but two hypotheses have been proposed. According to the first hypothesis, CMTs align perpendicular to the maximal growth direction, and, according to the second, CMTs align parallel to the maximal stress direction. Since both hypotheses were formulated on the basis of mainly qualitative assessments, the link between CMT organization, organ geometry, and cell growth is revisited using a quantitative approach. For this purpose, CMT orientation, local curvature, and growth parameters for each cell were measured in the growing shoot apical meristem (SAM) of Arabidopsis thaliana. Using this approach, it has been shown that stable CMTs tend to be perpendicular to the direction of maximal growth in cells at the SAM periphery, but parallel in the cells at the boundary domain. When examining the local curvature of the SAM surface, no strict correlation between curvature and CMT arrangement was found, which implies that SAM geometry, and presumed geometry-derived stress distribution, is not sufficient to prescribe the CMT orientation. However, a better match between stress and CMTs was found when mechanical stress derived from differential growth was also considered.
Journal of Experimental Botany | 2015
Moritz Jöst; Korinna Esfeld; Agata Burian; Gina Cannarozzi; Solomon Chanyalew; Cris Kuhlemeier; Kebebew Assefa; Zerihun Tadele
Highlight The semi-dwarf and lodging-tolerant kegne mutant linked to defects in microtubule orientation has the potential to enhance the productivity of an African orphan crop tef (Eragrostis tef).
Annals of Botany | 2015
Agata Burian; Magdalena Raczyńska-Szajgin; Dorota Borowska-Wykręt; Agnieszka Piatek; Mitsuhiro Aida; Dorota Kwiatkowska
BACKGROUND AND AIMS The arrangement of flowers in inflorescence shoots of Arabidopsis thaliana represents a regular spiral Fibonacci phyllotaxis. However, in the cuc2 cuc3 double mutant, flower pedicels are fused to the inflorescence stem, and phyllotaxis is aberrant in the mature shoot regions. This study examined the causes of this altered development, and in particular whether the mutant phenotype is a consequence of defects at the shoot apex, or whether post-meristematic events are involved. METHODS The distribution of flower pedicels and vascular traces was examined in cross-sections of mature shoots; sequential replicas were used to investigate the phyllotaxis and geometry of shoot apices, and growth of the young stem surface. The expression pattern of CUC3 was analysed by examining its promoter activity. KEY RESULTS Phyllotaxis irregularity in the cuc2 cuc3 double mutant arises during the post-meristematic phase of shoot development. In particular, growth and cell divisions in nodes of the elongating stem are not restricted in the mutant, resulting in pedicel-stem fusion. On the other hand, phyllotaxis in the mutant shoot apex is nearly as regular as that of the wild type. Vascular phyllotaxis, generated almost simultaneously with the phyllotaxis at the apex, is also much more regular than pedicel phyllotaxis. The most apparent phenotype of the mutant apices is a higher number of contact parastichies. This phenotype is associated with increased meristem size, decreased angular width of primordia and a shorter plastochron. In addition, the appearance of a sharp and deep crease, a characteristic shape of the adaxial primordium boundary, is slightly delayed and reduced in the mutant shoot apices. CONCLUSIONS The cuc2 cuc3 double mutant displays irregular phyllotaxis in the mature shoot but not in the shoot apex, thus showing a post-meristematic effect of the mutations on phyllotaxis. The main cause of this effect is the formation of pedicel-stem fusions, leading to an alteration of the axial positioning of flowers. Phyllotaxis based on the position of vascular flower traces suggests an additional mechanism of post-meristematic phyllotaxis alteration. Higher density of flower primordia may be involved in the post-meristematic effect on phyllotaxis, whereas delayed crease formation may be involved in the fusion phenotype. Promoter activity of CUC3 is consistent with its post-meristematic role in phyllotaxis.
Methods of Molecular Biology | 2014
Dorota Kwiatkowska; Agata Burian
Sequential replica method facilitates in vivo imaging of plant surface and provides data sufficient for detailed computation of geometry and growth. It enables obtaining a series of high-resolution images visualizing details of the examined surface. Series of molds, made in dental polymer, representing the examined surface are used to obtain casts in epoxy resin, which are in turn observed by scanning electron microscopy, while the structure itself remains intact. Images obtained from casts can be further used for data extraction, comprising 3D reconstruction and computation of local geometry and cell growth parameters. The sequential replica method is a universal method and can be applied to image complex shapes of a range of structures, like meristems, flowers, stems, leaves, or various types of trichomes. Different plant species growing in various conditions can be studied.
Current Biology | 2016
Agata Burian; Pierre Barbier de Reuille; Cris Kuhlemeier
Methods of Molecular Biology | 2014
Olivier Hamant; Pradeep Das; Agata Burian