Agata M. Brańczyk
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agata M. Brańczyk.
Journal of Optics | 2007
Timo A. Nieminen; Vincent L. Y. Loke; Alexander B. Stilgoe; Gregor Knöner; Agata M. Brańczyk; N. R. Heckenberg; Halina Rubinsztein-Dunlop
We describe a toolbox, implemented in Matlab, for the computational modelling of optical tweezers. The toolbox is designed for the calculation of optical forces and torques, and can be used for both spherical and nonspherical particles, in both Gaussian and other beams. The toolbox might also be useful for light scattering using either Lorenz–Mie theory or the T-matrix method.
New Journal of Physics | 2010
Agata M. Brańczyk; Timothy C. Ralph; Wolfram Helwig; Christine Silberhorn
The generation of heralded pure Fock states via spontaneous parametric down-conversion (PDC) relies on perfect photon-number correlations in the output modes. Correlations in any other degree of freedom, however, degrade the purity of the heralded state. In this paper, we investigate spectral entanglement between the two output modes of a periodically poled waveguide. With the intent of generating heralded one- and two-photon Fock states, we expand the output state of the PDC to second order in photon number. We explore the effects of spectral filtering and inefficient detection, of the heralding mode, on the count rate, g(2), and purity of the heralded state, as well as the fidelity between the resulting state and an ideal Fock state. We find that filtering can decrease spectral correlations, however, at the expense of the count rate and increased photon-number mixedness in the heralded output state. As a physical example, we model a type II PP-KTP waveguide pumped by lasers at wavelengths of 400?nm, 788?nm and 1.93??m. The latter two allow the fulfillment of extended phase-matching conditions in an attempt to eliminate spectral correlations in the PDC output state without the use of filtering; however, we find that, even in these cases, some filtering is needed to achieve states of very high purity.
Annalen der Physik | 2014
Agata M. Brańczyk; Daniel B. Turner; Gregory D. Scholes
Recent interest in the role of quantum mechanics in the primary events of photosynthetic energy transfer has led to a convergence of nonlinear optical spectroscopy and quantum optics on the topic of energy-transfer dynamics in pigment-protein complexes. The convergence of these two communities has unveiled a mismatch between the background and terminology of the respective fields. To make connections, we provide a pedagogical guide to understanding the basics of two-dimensional electronic spectra aimed at researchers with a background in quantum optics.
arXiv: Quantum Physics | 2013
Agata M. Brańczyk; Daniel B. Turner; Gregory D. Scholes
Recent interest in the role of quantum mechanics in the primary events of photosynthetic energy transfer has led to a convergence of nonlinear optical spectroscopy and quantum optics on the topic of energy-transfer dynamics in pigment-protein complexes. The convergence of these two communities has unveiled a mismatch between the background and terminology of the respective fields. To make connections, we provide a pedagogical guide to understanding the basics of two-dimensional electronic spectra aimed at researchers with a background in quantum optics.
Optics Express | 2011
Agata M. Brańczyk; Alessandro Fedrizzi; Thomas M. Stace; Timothy C. Ralph; Andrew White
Many applications in optical quantum information processing benefit from careful spectral shaping of single-photon wave-packets. In this paper we tailor the joint spectral wave-function of photons created in parametric downconversion by engineering the nonlinearity profile of a poled crystal. We designed a crystal with an approximately Gaussian nonlinearity profile and confirmed successful wave-packet shaping by two-photon interference experiments. We numerically show how our method can be applied for attaining one of the currently most important goals of single-photon quantum optics, the creation of pure single photons without spectral correlations.
Physical Review A | 2012
Ben Q. Baragiola; Robert L. Cook; Agata M. Brańczyk; Joshua Combes
We present a theoretical framework that describes a wave packet of light prepared in a state of definite photon number interacting with an arbitrary quantum system (e.g., a quantum harmonic oscillator or a multilevel atom). Within this framework we derive master equations for the system as well as for output field quantities such as quadratures and photon flux. These results are then generalized to wave packets with arbitrary spectral distribution functions. Finally, we obtain master equations and output field quantities for systems interacting with wave packets in multiple spatial and/or polarization modes.
Physical Review A | 2007
Agata M. Brańczyk; Paulo E. M. F. Mendonca; Alexei Gilchrist; Andrew C. Doherty; Stephen D. Bartlett
Measurements in quantum mechanics cannot perfectly distinguish all states and necessarily disturb the measured system. We present and analyze a proposal to demonstrate fundamental limits on quantum control of a single qubit arising from these properties of quantum measurements. We consider a qubit prepared in one of two nonorthogonal states and subsequently subjected to dephasing noise. The task is to use measurement and feedback control to attempt to correct the state of the qubit. We demonstrate that projective measurements are not optimal for this task, and that there exists a nonprojective measurement with an optimum measurement strength which achieves the best trade-off between gaining information about the system and disturbing it through measurement backaction. We study the performance of a quantum control scheme that makes use of this weak measurement followed by feedback control, and demonstrate that it realizes the optimal recovery from noise for this system. We contrast this approach with various classically inspired control schemes.
New Journal of Physics | 2012
Agata M. Brańczyk; Dylan H. Mahler; Lee A. Rozema; Ardavan Darabi; Aephraim M. Steinberg; Daniel F. V. James
We introduce and experimentally demonstrate a technique for performing quantum state tomography (QST) on multiple-qubit states despite incomplete knowledge about the unitary operations used to change the measurement basis. Given unitary operations with unknown rotation angles, our method can be used to reconstruct the density matrix of the state up to local rotations as well as recover the magnitude of the unknown rotation angle. We demonstrate high-fidelity self-calibrating tomography on polarization-encoded one- and two-photon states. The unknown unitary operations are realized in two ways: using a birefringent polymer sheet—an inexpensive smartphone screen protector—or alternatively a liquid crystal wave plate with a tuneable retardance. We explore how our technique may be adapted for QST of systems such as biological molecules where the magnitude and orientation of the transition dipole moment is not known with high accuracy.
Physical Review A | 2016
Annamaria Dosseva; Łukasz Cincio; Agata M. Brańczyk
We present a scheme for engineering the joint spectrum of photons created via spontaneous parametric down conversion. Our method relies on customizing the poling configuration of a quasi-phase-matched crystal. We use simulated annealing to find an optimized poling configuration which allows almost arbitrary shaping of the crystals phase-matching function. This has direct application in the creation of pure single photons---currently one of the most important goals of single-photon quantum optics. We describe the general algorithm and provide code, written in C++, that outputs an optimized poling configuration given specific experimental parameters.
conference on lasers and electro optics | 2015
Aurélia Chenu; Agata M. Brańczyk; J. E. Sipe
We ask whether or not thermal light can be represented as a mixture of single broadband coherent pulses. We find that it cannot. Such a mixture is simply not rich enough to mimic thermal light; indeed, it cannot even reproduce the first-order correlation function. We show that it is possible to construct a modified mixture of single coherent pulses that does yield the correct first-order correlation function at equal space points. However, as we then demonstrate, such a mixture cannot reproduce the second-order correlation function.