Agathe Boulangé
University of Rouen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agathe Boulangé.
Journal of the American Chemical Society | 2014
Philippe A. Peixoto; Agathe Boulangé; Malcolm S. Ball; Bertrand Naudin; Thibault Alle; Pascal Cosette; Peter Karuso; Xavier Franck
Epicocconone is a natural latent fluorophore that is widely used in biotechnology because of its large Stokes shift and lack of fluorescence in its unconjugated state. However, the low photostability and quantum yields of epicocconone have limited its wider use, and in the absence of a total synthesis, this limitation has been a long-standing problem. Here we report a general strategy for the synthesis of epicocconone analogues that relies on a 2-iodoxybenzoic acid-mediated dearomatization and on the replacement of the triene tail of the natural product by an aromatic ring. This design element is general and the synthesis is straightforward, providing ready access to libraries of polyfunctional fluorophores with long Stokes shifts based on the epicocconone core. Our structural modifications resulted in analogues with increased photostability and quantum yields compared with the natural product. Staining proteomic gels with these new analogues showed significant lowering of the detection limit and a 30% increase in the number of low-abundance proteins detected. These epiccoconone analogues will substantially improve the discovery rate of biomarker needles in the proteomic haystack.
Journal of Physical Chemistry A | 2014
Olga A. Syzgantseva; Vincent Tognetti; Agathe Boulangé; Philippe A. Peixoto; Stéphane Leleu; Xavier Franck; Laurent Joubert
Through-space charge transfers upon photon absorption in aminated epicocconone analogues, which serve as promising proteins markers, are investigated within time-dependent density functional theory using total densities differences and various point-charge models (with a special emphasis on Baders atoms-in-molecules theory). In particular, the distances and the amounts of charge transfer, as well as the transition dipole moments, are discussed from a methodological point of view, and their values are subsequently linked with the chemical structures of these efficient fluorophores. Finally, on the basis of these theoretical findings, several hints for the future improvement of the photochemical properties of these analogues are advanced.
Journal of Physical Chemistry A | 2012
Olga A. Syzgantseva; Vincent Tognetti; Laurent Joubert; Agathe Boulangé; Philippe A. Peixoto; Stéphane Leleu; Xavier Franck
In this work we present a combined theoretical and experimental study of UV/vis absorption spectra of novel organic chromophores derived from epicocconone. A computational protocol, consistent with experimental findings, is proposed in the framework of time-dependent density functional theory. More precisely, the influence of density functional, basis set, and solvation effects is assessed through theory-experiment matching. On the one hand, it is shown that global hybrid functionals fail to describe excitation spectra for the whole training set. On the other hand, range-separated hybrids allow a description of the complete set of epicocconone derivatives on equal footing, while the double-ζ basis set is shown to be sufficiently accurate for the screening of the spectroscopic properties in epicocconone analogues. The inclusion of solvent effects within a polarizable continuum model appears to be compulsory to decrease the residual dispersion. State specific solvation, on the contrary, does not provide a significant consistency/accuracy improvement. Besides, conformational transformations in investigated compounds and their influence on electronic absorption spectra are pointed out. A systematic choice of the same conformation for each compound from the training set enhances consistency and accuracy of our theoretical model. Lastly, a TDDFT-based calibration is proposed for prediction of absorption wavelengths in epicocconone analogues.
Journal of Molecular Modeling | 2014
Vincent Tognetti; Agathe Boulangé; Philippe A. Peixoto; Xavier Franck; Laurent Joubert
The reaction mechanism of diastereoselective oxidative dearomatization by iodoxybenzoic acid of key compounds involved in the total synthesis of epicocconone analogs, which are efficient fluorophores with a wide range of applications in protein staining and separation, was studied using density functional theory. In particular, the conformational space was investigated, as was the role of the so-called hypervalent twist move, which is thought to be the rate-determining step. Both kinetic and thermodynamical aspects of the mechanism were considered from static and dynamic viewpoints, including solvent effects. The results were then rationalized using conceptual density functional theory and Bader’s atoms-in-molecules framework, which demonstrated how complementary these two approaches are when studying organic chemistry reactions theoretically.
Journal of Physical Chemistry B | 2013
Soumit Chatterjee; Peter Karuso; Agathe Boulangé; Philippe A. Peixoto; Xavier Franck; Anindya Datta
Engineering the properties of fluorescent probes through modifications of the fluorophore structure has become a subject of interest in recent times. By doing this, the photophysical and photochemical properties of the modified fluorophore can be understood and this can guide the design and synthesis of better fluorophores for use in biotechnology. In this work, the electronic spectra and fluorescence decay kinetics of four analogues of the fluorescent natural product epicocconone were investigated. Epicocconone is unique in that the native state is weakly green fluorescent, whereas the enamine formed reversibly with proteins is highly emissive in the red. It was found that the ultrafast dynamics of the analogues depends profoundly on the H-bonding effect of solvents and solvent viscosity though solvent polarity also plays a role. Comparing the steady state and time-resolved data, the weak fluorescence of epicocconone in its native state is most likely due to the photoisomerization of the hydrocarbon side chain, while the keto enol moiety also has a role to play in determining the fluorescence quantum yield. This understanding is expected to aid the design of better protein stains from the same family.
Bioorganic & Medicinal Chemistry | 2015
Agathe Boulangé; Javier Párraga; Abraham Galán; Nuria Cabedo; Stéphane Leleu; Maria-Jesus Sanz; Diego Cortes; Xavier Franck
The one-pot multicomponent synthesis of natural butenolides named cadiolides A, B, C and analogues has been realized. The antibacterial structure activity relationship shows that the presence of phenolic hydroxyl groups and the number and position of bromine atoms on the different aromatic rings are important features for antibacterial activity, besides it was demonstrated the tolerance of both benzene and furan ring at position 3 of the butenolide nucleus. Furthermore, none of the most relevant antibacterial compounds showed any cytotoxicity in freshly isolated human neutrophils.
European Journal of Medicinal Chemistry | 2013
Laura Moreno; Nuria Cabedo; Agathe Boulangé; Javier Párraga; Abraham Galán; Stéphane Leleu; Maria-Jesus Sanz; Diego Cortes; Xavier Franck
Benzo[a]quinolizine is an important heterocyclic framework that can be found in numerous bioactive compounds. The general scheme for the synthesis of these compounds was based on the preparation of the appropriate dihydroisoquinolines by Bischler-Napieralski cyclization with good yields, followed by the Pemberton method to form the oxazinones or pyridones derivatives via acyl-ketene imine cyclocondensation. All the synthesized compounds were assayed in vitro for their ability to inhibit mitochondrial respiratory chain. Most of the tested compounds were able to inhibit the integrated electron transfer chain, measured as NADH oxidation, which includes complexes I, III and IV, in the low micromolar range. Oxazino[2,3-a]isoquinolin-4-ones displayed greater activity than their pyrido[2,1-a]isoquinolin-4-ones analogs. Indeed, the presence of a furan ring in C₂ position of oxazino[2,3-a]isoquinolin-4-ones provided the compound (1g) with the most potent biological activity. Therefore, these compounds and especially the oxazinone derivatives are in the tendency of the new less toxic antitumor agents that target mitochondrial electron transport chain in a middle range potency.
Journal of Physical Chemistry B | 2015
Soumit Chatterjee; Peter Karuso; Agathe Boulangé; Xavier Franck; Anindya Datta
The natural product epicocconone, owing to its unique fluorescence properties, has been developed into a range of products used in biotechnology, especially proteomics. However, its weak green fluorescence in its native state, while advantageous for proteomics applications, is a disadvantage in other applications that require two-color readouts. Here we report the photophysical characterization of two brightly fluorescent analogues of epicocconone. These analogues, with naphthyl or pyridyl groups replacing the heptatriene chain, resulted in bright fluorescence in both the native state and the long Stokes shifted enamine. Time-resolved fluorescence studies and DFT calculations were carried out to understand the excited state processes involved in fluorescence. Results showed the p-chloro group on the pyridyl is responsible for the high fluorescence of the native fluorophore. The application of one of these compounds for staining electrophoresis gels is exemplified.
Chemistry: A European Journal | 2011
Agathe Boulangé; Philippe A. Peixoto; Xavier Franck
European Journal of Organic Chemistry | 2013
Philippe A. Peixoto; Agathe Boulangé; Stéphane Leleu; Xavier Franck