Agathoklis Giaralis
City University London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agathoklis Giaralis.
Computer-aided Civil and Infrastructure Engineering | 2007
Pol D. Spanos; Agathoklis Giaralis; N. P. Politis; Jose M. Roesset
The harmonic wavelet transform is employed to analyze various kinds of nonstationary signals common in aseismic design. The effectiveness of the harmonic wavelets for capturing the temporal evolution of the frequency content of strong ground motions is demonstrated. In this regard, a detailed study of important earthquake accelerograms is undertaken and smooth joint time-frequency spectra are provided for two near-field and two far-field records; inherent in this analysis is the concept of the mean instantaneous frequency. Furthermore, as a paradigm of usefulness for aseismic structural purposes, a similar analysis is conducted for the response of a 20-story steel frame benchmark building considering one of the four accelerograms scaled by appropriate factors as the excitation to simulate undamaged and severely damaged conditions for the structure. The resulting joint time-frequency representation of the response time histories captures the influence of nonlinearity on the variation of the effective natural frequencies of a structural system during the evolution of a seismic event. In this context, the potential of the harmonic wavelet transform as a detection tool for global structural damage is explored in conjunction with the concept of monitoring the mean instantaneous frequency of records of critical structural responses.
Journal of Structural Engineering-asce | 2017
Agathoklis Giaralis; Francesco Petrini
In this paper the classical linear tuned mass-damper (TMD) is coupled with an inerter, a two-terminal device resisting the relative acceleration of its terminals, in various tuned mass-damper-inerter (TMDI) topologies to suppress excessive wind-induced oscillations in tall buildings causing occupants’ discomfort. A parametric numerical study is undertaken involving a top-floor-TMD-equipped planar frame capturing accurately the in-plane dynamic behavior of a 74-storey benchmark building exposed to a quasi-stationary spatially-correlated wind-force field accounting for vortex shedding effects in the across-wind direction. It is found that the TMDI reduces the peak top floor acceleration more effectively than the TMD by considering smaller attached mass values, and TMDI topologies in which the inerter spans more stories in linking the attached mass to the host structure. Moreover, the inclusion of the inerter reduces dramatically the TMD stroke while it was verified that the magnitude of the developing inerter forces can be readily accommodated by the host structure. Pertinent illustrative examples are included showcasing that the TMDI meets code-prescribed serviceability design requirements for new tall buildings using significantly smaller attached mass compared to the TMD, and that inerter devices can be used to upgrade the performance of existing TMD-equipped tall buildings without changing the attached mass.
Archive | 2015
Agathoklis Giaralis; Alexandros A. Taflanidis
The reliability based optimal design is considered of tuned mass-damper-inerter (TMDI) equipped linear building frames subject to seismic excitations modeled as stationary colored random processes. The TMDI is a recently introduced generalization of the classical linear tuned mass-damper (TMD) benefitting from the mass amplification property, the so-called inertance, of the inerter device to enhance the vibration suppression capabilities of the TMD. The frequency, damping ratio, and inertance TMDI properties are treated as design variables to minimize out-crossing rates of prespecified thresholds for building floor accelerations, inter-storey drifts, and TMDI mass displacement. Numerical data pertaining to a 10-storey frame structure equipped with a TMDI arranged in 12 different topologies are furnished indicating the enhanced performance of the TMDI over the classical TMD especially for relatively small additional attached mass.
Proceedings of SPIE | 2015
Bamrung Tau Siesakul; Kyriaki Gkoktsi; Agathoklis Giaralis
Motivated by the need to reduce monetary and energy consumption costs of wireless sensor networks in undertaking output-only/operational modal analysis of engineering structures, this paper considers a multi-coset analog-toinformation converter for structural system identification from acceleration response signals of white noise excited linear damped structures sampled at sub-Nyquist rates. The underlying natural frequencies, peak gains in the frequency domain, and critical damping ratios of the vibrating structures are estimated directly from the sub-Nyquist measurements and, therefore, the computationally demanding signal reconstruction step is by-passed. This is accomplished by first employing a power spectrum blind sampling (PSBS) technique for multi-band wide sense stationary stochastic processes in conjunction with deterministic non-uniform multi-coset sampling patterns derived from solving a weighted least square optimization problem. Next, modal properties are derived by the standard frequency domain peak picking algorithm. Special attention is focused on assessing the potential of the adopted PSBS technique, which poses no sparsity requirements to the sensed signals, to derive accurate estimates of modal structural system properties from noisy sub- Nyquist measurements. To this aim, sub-Nyquist sampled acceleration response signals corrupted by various levels of additive white noise pertaining to a benchmark space truss structure with closely spaced natural frequencies are obtained within an efficient Monte Carlo simulation-based framework. Accurate estimates of natural frequencies and reasonable estimates of local peak spectral ordinates and critical damping ratios are derived from measurements sampled at about 70% below the Nyquist rate and for SNR as low as 0db demonstrating that the adopted approach enjoys noise immunity.
Structural Health Monitoring-an International Journal | 2017
Kyriaki Gkoktsi; Agathoklis Giaralis
This article assesses numerically the potential of two different spectral estimation approaches supporting non-uniform-in-time data sampling at sub-Nyquist average rates (i.e. below the Nyquist frequency) to reduce data transmission payloads in wireless sensor networks for operational modal analysis of civil engineering structures. This consideration relaxes transmission bandwidth constraints in wireless sensor networks and prolongs sensor battery life since wireless transmission is the most energy-hungry on-sensor operation. Both the approaches assume acquisition of sub-Nyquist structural response acceleration measurements and transmission to a base station without on-sensor processing. The response acceleration power spectral density matrix is estimated directly from the sub-Nyquist measurements, and structural mode shapes are extracted using the frequency-domain decomposition algorithm. The first approach relies on the compressive sensing theory to treat sub-Nyquist randomly sampled data assuming that the acceleration signals are sparse/compressible in the frequency domain (i.e. have a small number of Fourier coefficients with significant magnitude). The second approach is based on a power spectrum blind sampling technique considering periodic deterministic sub-Nyquist “multi-coset” sampling and treating the acceleration signals as wide-sense stationary stochastic processes without posing any sparsity conditions. The modal assurance criterion is adopted to quantify the quality of mode shapes derived by the two approaches at different sub-Nyquist compression rates using computer-generated signals of different sparsity and field-recorded stationary data pertaining to an overpass in Zurich, Switzerland. It is shown that for a given compression rate, the performance of the compressive sensing–based approach is detrimentally affected by signal sparsity, while the power spectrum blind sampling–based approach achieves modal assurance criterion >0.96 independently of signal sparsity for compression ratios as low as 22% the Nyquist rate. It is concluded that the power spectrum blind sampling–based approach reduces effectively data transmission requirements in wireless sensor networks for operational modal analysis, without being limited by signal sparsity and without requiring a priori assumptions or knowledge of signal sparsity.
Journal of Physics: Conference Series | 2016
Jonathan Salvi; Agathoklis Giaralis
A novel dynamic vibration absorber (DVA) configuration is introduced for simultaneous vibration suppression and energy harvesting from oscillations typically exhibited by large-scale low-frequency engineering structures and structural components. The proposed configuration, termed energy harvesting-enabled tuned mass-damper-inerter (EH-TMDI) comprises a mass grounded via an in-series electromagnetic motor (energy harvester)-inerter layout, and attached to the primary structure through linear spring and damper in parallel connection. The governing equations of motion are derived and solved in the frequency domain, for the case of harmonically-excited primary structures, here modelled as damped single-degree- of-freedom (SDOF) systems. Comprehensive parametric analyses proved that by varying the mass amplification property of the grounded inerter, and by adjusting the stiffness and the damping coefficients using simple optimum tuning formulae, enhanced vibration suppression (in terms of primary structure peak displacement) and energy harvesting (in terms of relative velocity at the terminals of the energy harvester) may be achieved concurrently and at nearresonance frequencies, for a fixed attached mass. Hence, the proposed EH-TMDI allows for relaxing the trade-off between vibration control and energy harvesting purposes, and renders a dual-objective optimisation a practically-feasible, reliable task.
international conference on systems signals and image processing | 2015
Kyriaki Gkoktsi; Bamrung TauSiesakul; Agathoklis Giaralis
Operational modal analysis (OMA) is a widely used construction verification and structural health monitoring technique aiming to obtain the modal properties of vibrating civil engineering structures subject to ambient dynamic loads by collecting and processing structural response acceleration signals. Motivated by the need for cost-efficient OMA using wireless sensor networks which acquire and transmit measurements at a lower than the Nyquist rate, a novel OMA approach is put forth to derive modal properties directly from sub-Nyquist sampled (compressed) acceleration measurements from arrays of sensors. This is achieved by adopting sub-Nyquist deterministic non-uniform multi-coset sampling devices and by extending a previously proposed in the literature power spectrum blind sampling method for single-channel spectral estimation of stochastic processes to treat the case of multiple channel cross-spectral estimation. The standard frequency domain decomposition is used to obtain the modal properties from the cross-spectral matrix derived directly from the sub-Nyquist measurements. The applicability and efficiency of the proposed approach is exemplified by retrieving mode shapes of a white-noise excited simply supported steel beam with good accuracy according to the widely used modal assurance criterion using 70% less than the Nyquist rate measurements.
Proceedings of SPIE | 2016
Agathoklis Giaralis; Laurentiu Marian
This paper explores the practical benefits of the recently proposed by the authors tuned mass-damper-inerter (TMDI) visà- vis the classical tuned mass-damper (TMD) for the passive vibration control of seismically excited linearly building structures assumed to respond linearly. Special attention is focused on showcasing that the TMDI requires considerably reduced attached mass/weight to achieve the same vibration suppression level as the classical TMD by exploiting the mass amplification effect of the ideal inerter device. The latter allows for increasing the inertial property of the TMDI without a significant increase to its physical weight. To this end, novel numerical results pertaining to a seismically excited 3-storey frame building equipped with optimally designed TMDIs for various values of attached mass and inertance (i.e., constant of proportionality of the inerter resisting force in mass units) are furnished. The seismic action is modelled by a non-stationary stochastic process compatible with the elastic acceleration response spectrum of the European seismic code (Eurocode 8), while the TMDIs are tuned to minimize the mean square top floor displacement. It is shown that the TMDI achieves the same level of performance as an unconventional “large mass” TMD for seismic protection (i.e., more than 10% of attached mass of the total building mass), by incorporating attached masses similar to the ones used for controlling wind-induced vibrations via TMDs (i.e., 1%-5% of the total building mass). Moreover, numerical data from response history analyses for a suite of Eurocode 8 compatible recorded ground motions further demonstrate that optimally tuned TMDIs for top floor displacement minimization achieve considerable reductions in terms of top floor acceleration and attached mass displacement (stroke) compared to the classical TMD with the same attached mass.
Proceedings of SPIE | 2016
Kyriaki Gkoktsi; Agathoklis Giaralis; Bamrung TauSiesakul
Motivated by a need to reduce energy consumption in wireless sensors for vibration-based structural health monitoring (SHM) associated with data acquisition and transmission, this paper puts forth a novel approach for undertaking operational modal analysis (OMA) and damage localization relying on compressed vibrations measurements sampled at rates well below the Nyquist rate. Specifically, non-uniform deterministic sub-Nyquist multi-coset sampling of response acceleration signals in white noise excited linear structures is considered in conjunction with a power spectrum blind sampling/estimation technique which retrieves/samples the power spectral density matrix from arrays of sensors directly from the sub-Nyquist measurements (i.e., in the compressed domain) without signal reconstruction in the time-domain and without posing any signal sparsity conditions. The frequency domain decomposition algorithm is then applied to the power spectral density matrix to extract natural frequencies and mode shapes as a standard OMA step. Further, the modal strain energy index (MSEI) is considered for damage localization based on the mode shapes extracted directly from the compressed measurements. The effectiveness and accuracy of the proposed approach is numerically assessed by considering simulated vibration data pertaining to a white-noise excited simply supported beam in healthy and in 3 damaged states, contaminated with Gaussian white noise. Good accuracy is achieved in estimating mode shapes (quantified in terms of the modal assurance criterion) and natural frequencies from an array of 15 multi-coset devices sampling at a 70% slower than the Nyquist frequency rate for SNRs as low as 10db. Damage localization of equal level/quality is also achieved by the MSEI applied to mode shapes derived from noisy sub-Nyquist (70% compression) and Nyquist measurements for all damaged states considered. Overall, the furnished numerical results demonstrate that the herein considered sub-Nyquist sampling and multi-sensor power spectral density estimation techniques coupled with standard OMA and damage detection approaches can achieve effective SHM from significantly fewer noisy acceleration measurements.
Archive | 2016
Ioannis Avramidis; Asimina Athanatopoulou; Konstantinos Morfidis; Anastasios Sextos; Agathoklis Giaralis
This chapter provides practical recommendations for the preliminary seismic design and the finite element modeling of reinforced concrete (r/c) building structures assumed to behave linearly. It also discusses and provides commentary on structural seismic analysis methods adopted by Eurocode 8 (EC8). Specifically, the main principles of conceptual design for achieving well-qualified lateral load-resisting structural systems for earthquake resistance are briefly reviewed. Further, capacity design rules and local detailing practices for enhanced ductility capacity in r/c buildings are presented. Different types of structural analysis methods commonly employed in code-compliant seismic design of structures are outlined and focus is given to the EC8-prescribed equivalent linear analysis methods for forced-based seismic design, namely, the lateral force method and the modal response spectrum method. In this context, the EC8-compatible seismic design loading combinations and the EC8 design spectrum for elastic analysis are also presented. Moreover, the most commonly used finite element modeling practices for linear analysis of r/c multi-storey buildings are detailed, including the modeling of floor slabs, frames, planar walls, cores, and footings resting on compliant soil. Finally, brief comments are included on the proper use and quality verification of commercial seismic design software using benchmark structural analysis and design example problems.