Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agnes B. Kane is active.

Publication


Featured researches published by Agnes B. Kane.


Chemical Research in Toxicology | 2012

Biological Interactions of Graphene-Family Nanomaterials: An Interdisciplinary Review

Vanesa C. Sanchez; Ashish Jachak; Robert H. Hurt; Agnes B. Kane

Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms isolated from its three-dimensional parent material, graphite. Related materials include few-layer-graphene (FLG), ultrathin graphite, graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanosheets (GNS). This review proposes a systematic nomenclature for this set of Graphene-Family Nanomaterials (GFNs) and discusses specific materials properties relevant for biomolecular and cellular interactions. We discuss several unique modes of interaction between GFNs and nucleic acids, lipid bilayers, and conjugated small molecule drugs and dyes. Some GFNs are produced as dry powders using thermal exfoliation, and in these cases, inhalation is a likely route of human exposure. Some GFNs have aerodynamic sizes that can lead to inhalation and substantial deposition in the human respiratory tract, which may impair lung defense and clearance leading to the formation of granulomas and lung fibrosis. The limited literature on in vitro toxicity suggests that GFNs can be either benign or toxic to cells, and it is hypothesized that the biological response will vary across the material family depending on layer number, lateral size, stiffness, hydrophobicity, surface functionalization, and dose. Generation of reactive oxygen species (ROS) in target cells is a potential mechanism for toxicity, although the extremely high hydrophobic surface area of some GFNs may also lead to significant interactions with membrane lipids leading to direct physical toxicity or adsorption of biological molecules leading to indirect toxicity. Limited in vivo studies demonstrate systemic biodistribution and biopersistence of GFNs following intravenous delivery. Similar to other smooth, continuous, biopersistent implants or foreign bodies, GFNs have the potential to induce foreign body tumors. Long-term adverse health impacts must be considered in the design of GFNs for drug delivery, tissue engineering, and fluorescence-based biomolecular sensing. Future research is needed to explore fundamental biological responses to GFNs including systematic assessment of the physical and chemical material properties related to toxicity. Complete materials characterization and mechanistic toxicity studies are essential for safer design and manufacturing of GFNs in order to optimize biological applications with minimal risks for environmental health and safety.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites

Yinfeng Li; Hongyan Yuan; Annette von dem Bussche; Megan A. Creighton; Robert H. Hurt; Agnes B. Kane; Huajian Gao

Understanding and controlling the interaction of graphene-based materials with cell membranes is key to the development of graphene-enabled biomedical technologies and to the management of graphene health and safety issues. Very little is known about the fundamental behavior of cell membranes exposed to ultrathin 2D synthetic materials. Here we investigate the interactions of graphene and few-layer graphene (FLG) microsheets with three cell types and with model lipid bilayers by combining coarse-grained molecular dynamics (MD), all-atom MD, analytical modeling, confocal fluorescence imaging, and electron microscopic imaging. The imaging experiments show edge-first uptake and complete internalization for a range of FLG samples of 0.5- to 10-μm lateral dimension. In contrast, the simulations show large energy barriers relative to kBT for membrane penetration by model graphene or FLG microsheets of similar size. More detailed simulations resolve this paradox by showing that entry is initiated at corners or asperities that are abundant along the irregular edges of fabricated graphene materials. Local piercing by these sharp protrusions initiates membrane propagation along the extended graphene edge and thus avoids the high energy barrier calculated in simple idealized MD simulations. We propose that this mechanism allows cellular uptake of even large multilayer sheets of micrometer-scale lateral dimension, which is consistent with our multimodal bioimaging results for primary human keratinocytes, human lung epithelial cells, and murine macrophages.


Nature Nanotechnology | 2011

Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation

Xinghua Shi; Annette von dem Bussche; Robert H. Hurt; Agnes B. Kane; Huajian Gao

Materials with high aspect ratio, such as carbon nanotubes and asbestos fibres, have been shown to cause length-dependent toxicity in certain cells because these long materials prevent complete ingestion and this frustrates the cell. Biophysical models have been proposed to explain how spheres and elliptical nanostructures enter cells, but one-dimensional nanomaterials have not been examined. Here, we show experimentally and theoretically that cylindrical one-dimensional nanomaterials such as carbon nanotubes enter cells through the tip first. For nanotubes with end caps or carbon shells at their tips, uptake involves tip recognition through receptor binding, rotation that is driven by asymmetric elastic strain at the tube-bilayer interface, and near-vertical entry. The precise angle of entry is governed by the relative timescales for tube rotation and receptor diffusion. Nanotubes without caps or shells on their tips show a different mode of membrane interaction, posing an interesting question as to whether modifying the tips of tubes may help avoid frustrated uptake by cells.


ACS Nano | 2012

Chemical Transformations of Nanosilver in Biological Environments

Jingyu Liu; Zhongying Wang; Frances D. Liu; Agnes B. Kane; Robert H. Hurt

The widespread use of silver nanoparticles (Ag-NPs) in consumer and medical products provides strong motivation for a careful assessment of their environmental and human health risks. Recent studies have shown that Ag-NPs released to the natural environment undergo profound chemical transformations that can affect silver bioavailability, toxicity, and risk. Less is known about Ag-NP chemical transformations in biological systems, though the medical literature clearly reports that chronic silver ingestion produces argyrial deposits consisting of silver-, sulfur-, and selenium-containing particulate phases. Here we show that Ag-NPs undergo a rich set of biochemical transformations, including accelerated oxidative dissolution in gastric acid, thiol binding and exchange, photoreduction of thiol- or protein-bound silver to secondary zerovalent Ag-NPs, and rapid reactions between silver surfaces and reduced selenium species. Selenide is also observed to rapidly exchange with sulfide in preformed Ag(2)S solid phases. The combined results allow us to propose a conceptual model for Ag-NP transformation pathways in the human body. In this model, argyrial silver deposits are not translocated engineered Ag-NPs, but rather secondary particles formed by partial dissolution in the GI tract followed by ion uptake, systemic circulation as organo-Ag complexes, and immobilization as zerovalent Ag-NPs by photoreduction in light-affected skin regions. The secondary Ag-NPs then undergo detoxifying transformations into sulfides and further into selenides or Se/S mixed phases through exchange reactions. The formation of secondary particles in biological environments implies that Ag-NPs are not only a product of industrial nanotechnology but also have long been present in the human body following exposure to more traditional chemical forms of silver.


Small | 2008

Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing.

Lin Guo; Annette von dem Bussche; Michelle Buechner; Aihui Yan; Agnes B. Kane; Robert H. Hurt

Nanotoxicology and nanomedicine make extensive use of in vitro cellular assays that were developed prior to the nanotechnology era. The introduction of nanomaterials to these standard assays causes problems that are currently limiting progress in the field.[1] Nanoparticles are often difficult to disperse;[2] they can interfere with optical measurements through light absorption, and they can interact with dyes used as molecular probes of cellular integrity.[3] In some cases the resulting artifacts can lead to gross misinterpretation of effects on cell viability and cytotoxicity.[4] Because sp2-hybridized carbon materials are near-universal sorbents for organic compounds in aqueous phases, and in light of a recent report of favorable noncovalent interactions between small-aromatic-molecule therapeutic agents and single-walled carbon nanotubes (SWNTs),[5] we hypothesize that SWNTs will adsorb a wide variety of small organic solutes from biological media, not limited to indicator dyes or their water-insoluble reduction products.


Nano Letters | 2012

Aerosol synthesis of cargo-filled graphene nanosacks

Yantao Chen; Fei Yun Guo; Ashish Jachak; Sang-Pil Kim; Dibakar Datta; Jingyu Liu; Indrek Külaots; Charles A. Vaslet; Hee Dong Jang; Jiaxing Huang; Agnes B. Kane; Vivek B. Shenoy; Robert H. Hurt

Water microdroplets containing graphene oxide and a second solute are shown to spontaneously segregate into sack-cargo nanostructures upon drying. Analytical modeling and molecular dynamics suggest the sacks form when slow-diffusing graphene oxide preferentially accumulates and adsorbs at the receding air-water interface, followed by capillary collapse. Cargo-filled graphene nanosacks can be nanomanufactured by a simple, continuous, scalable process and are promising for many applications where nanoscale materials should be isolated from the environment or biological tissue.


Oncogene | 2005

Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth

Deborah A. Altomare; Huihong You; Guang-Hui Xiao; Maria E. Ramos-Nino; Kristine L Skele; Assunta De Rienzo; Suresh C. Jhanwar; Brooke T. Mossman; Agnes B. Kane; Joseph R. Testa

Malignant mesotheliomas (MMs) are very aggressive tumors that respond poorly to standard chemotherapeutic approaches. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway has been implicated in tumor aggressiveness, in part by mediating cell survival and reducing sensitivity to chemotherapy. Using antibodies recognizing the phosphorylated/activated form of AKT kinases, we observed elevated phospho-AKT staining in 17 of 26 (65%) human MM specimens. In addition, AKT phosphorylation was consistently observed in MMs arising in asbestos-treated mice and in MM cell xenografts. Consistent with reports implicating hepatocyte growth factor (HGF)/Met receptor signaling in MM, all 14 human and murine MM cell lines had HGF-inducible AKT activity. One of nine human MM cell lines had elevated AKT activity under serum-starvation conditions, which was associated with a homozygous deletion of PTEN, the first reported in MM. Treatment of this cell line with the mTOR inhibitor rapamycin resulted in growth arrest in G1 phase. Treatment of MM cells with the PI3K inhibitor LY294002 in combination with cisplatin had greater efficacy in inhibiting cell proliferation and inducing apoptosis than either agent alone. Collectively, these data indicate that MMs frequently express elevated AKT activity, which may be targeted pharmacologically to enhance chemotherapeutic efficacy. These findings also suggest that mouse models of MM may be useful for future preclinical studies of pharmaceuticals targeting the PI3K/AKT pathway.


Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2009

Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos?

Vanesa C. Sanchez; Jodie R. Pietruska; Nathan R. Miselis; Robert H. Hurt; Agnes B. Kane

Human diseases associated with exposure to asbestos fibers include pleural fibrosis and plaques, pulmonary fibrosis (asbestosis), lung cancer, and diffuse malignant mesothelioma. The critical determinants of fiber bioactivity and toxicity include not only fiber dimensions, but also shape, surface reactivity, crystallinity, chemical composition, and presence of transition metals. Depending on their size and dimensions, inhaled fibers can penetrate the respiratory tract to the distal airways and into the alveolar spaces. Fibers can be cleared by several mechanisms, including the mucociliary escalator, engulfment, and removal by macrophages, or through splitting and chemical modification. Biopersistence of long asbestos fibers can lead to inflammation, granuloma formation, fibrosis, and cancer. Exposure to synthetic carbon nanomaterials, including carbon nanofibers and carbon nanotubes (CNTs), is considered a potential health hazard because of their physical similarities with asbestos fibers. Respiratory exposure to CNTs can produce an inflammatory response, diffuse interstitial fibrosis, and formation of fibrotic granulomas similar to that observed in asbestos-exposed animals and humans. Given the known cytotoxic and carcinogenic properties of asbestos fibers, toxicity of fibrous nanomaterials is a topic of intense study. The mechanisms of nanomaterial toxicity remain to be fully elucidated, but recent evidence suggests points of similarity with asbestos fibers, including a role for generation of reactive oxygen species, oxidative stress, and genotoxicity. Considering the rapid increase in production and use of fibrous nanomaterials, it is imperative to gain a thorough understanding of their biologic activity to avoid the human health catastrophe that has resulted from widespread use of asbestos fibers.


Cancer Research | 2005

A Mouse Model Recapitulating Molecular Features of Human Mesothelioma

Deborah A. Altomare; Charles A. Vaslet; Kristine L Skele; Assunta De Rienzo; Karthik Devarajan; Suresh C. Jhanwar; Andrea I. McClatchey; Agnes B. Kane; Joseph R. Testa

Malignant mesothelioma has been linked to asbestos exposure and generally has a poor prognosis because it is often diagnosed in advanced stages and is refractory to conventional therapy. Human malignant mesotheliomas accumulate multiple somatic genetic alterations, including inactivation of the NF2 and CDKN2A/ARF tumor suppressor genes. To better understand the significance of NF2 inactivation in malignant mesothelioma and identify tumor suppressor gene alterations that cooperate with NF2 loss of function in malignant mesothelioma pathogenesis, we treated Nf2 (+/-) knockout mice with asbestos to induce malignant mesotheliomas. Asbestos-exposed Nf2 (+/-) mice exhibited markedly accelerated malignant mesothelioma tumor formation compared with asbestos-treated wild-type (WT) littermates. Loss of the WT Nf2 allele, leading to biallelic inactivation, was observed in all nine asbestos-induced malignant mesotheliomas from Nf2 (+/-) mice and in 50% of malignant mesotheliomas from asbestos-exposed WT mice. For a detailed comparison with the murine model, DNA analyses were also done on a series of human malignant mesothelioma samples. Remarkably, similar to human malignant mesotheliomas, tumors from Nf2 (+/-) mice showed frequent homologous deletions of the Cdkn2a/Arf locus and adjacent Cdkn2b tumor suppressor gene, as well as reciprocal inactivation of Tp53 in a subset of tumors that retained the Arf locus. As in the human disease counterpart, malignant mesotheliomas from the Nf2 (+/-) mice also showed frequent activation of Akt kinase, which plays a central role in tumorigenesis and therapeutic resistance. Thus, this murine model of environmental carcinogenesis faithfully recapitulates many of the molecular features of human malignant mesothelioma and has significant implications for the further characterization of malignant mesothelioma pathogenesis and preclinical testing of novel therapeutic modalities.


ACS Nano | 2013

Biological and Environmental Transformations of Copper-Based Nanomaterials

Zhongying Wang; Annette von dem Bussche; Pranita K. Kabadi; Agnes B. Kane; Robert H. Hurt

Copper-based nanoparticles are an important class of materials with applications as catalysts, conductive inks, and antimicrobial agents. Environmental and safety issues are particularly important for copper-based nanomaterials because of their potential large-scale use and their high redox activity and toxicity reported from in vitro studies. Elemental nanocopper oxidizes readily upon atmospheric exposure during storage and use, so copper oxides are highly relevant phases to consider in studies of environmental and health impacts. Here we show that copper oxide nanoparticles undergo profound chemical transformations under conditions relevant to living systems and the natural environment. Copper oxide nanoparticle (CuO-NP) dissolution occurs at lysosomal pH (4-5), but not at neutral pH in pure water. Despite the near-neutral pH of cell culture medium, CuO-NPs undergo significant dissolution in media over time scales relevant to toxicity testing because of ligand-assisted ion release, in which amino acid complexation is an important contributor. Electron paramagnetic resonance (EPR) spectroscopy shows that dissolved copper in association with CuO-NPs are the primary redox-active species. CuO-NPs also undergo sulfidation by a dissolution-reprecipitation mechanism, and the new sulfide surfaces act as catalysts for sulfide oxidation. Copper sulfide NPs are found to be much less cytotoxic than CuO-NPs, which is consistent with the very low solubility of CuS. Despite this low solubility of CuS, EPR studies show that sulfidated CuO continues to generate some ROS activity due to the release of free copper by H2O2 oxidation during the Fenton-chemistry-based EPR assay. While sulfidation can serve as a natural detoxification process for nanosilver and other chalcophile metals, our results suggest that sulfidation may not fully and permanently detoxify copper in biological or environmental compartments that contain reactive oxygen species.

Collaboration


Dive into the Agnes B. Kane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee Goodglick

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge