Agnés Borràs
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agnés Borràs.
iberian conference on pattern recognition and image analysis | 2003
Agnés Borràs; Francesc Tous; Josep Lladós; Maria Vanrell
This work is a part of a surveillance system where content-based image retrieval is done in terms of people appearance. Given an image of a person, our work provides an automatic description of his clothing according to the colour, texture and structural composition of its garments. We present a two-stage process composed by image segmentation and a region-based interpretation. We segment an image by modelling it due to an attributed graph and applying a hybrid method that follows a split-and-merge strategy. We propose the interpretation of five cloth combinations that are modelled in a graph structure in terms of region features. The interpretation is viewed as a graph matching with an associated cost between the segmentation and the cloth models. Finally, we have tested the process with a ground-truth of one hundred images.
machine vision applications | 2013
Sergio Vera; Debora Gil; Agnés Borràs; Marius George Linguraru; Miguel Ángel González Ballester
To provide more intuitive and easily interpretable representations of complex shapes/organs, medial manifolds should reach a compromise between simplicity in geometry and capability of restoring the anatomy/shape of the organ/volume. Existing morphological methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds from a theoretical and a practical point of view. First, we introduce a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. Second, we present a validation protocol for assessing the suitability of medial surfaces for anatomical representation in medical applications. We evaluate quantitatively the performance of our method with respect to existing approaches and show its higher performance for medical imaging applications in terms of medial simplicity and capability of reconstructing the anatomical volume.
STACOM'12 Proceedings of the third international conference on Statistical Atlases and Computational Models of the Heart: imaging and modelling challenges | 2012
Debora Gil; Agnés Borràs; Ruth Arís; Mariano Vázquez; Pierre Lafortune; Guillaume Houzeaux; Jazmin Aguado; Manel Ballester; Chi Hion Li; Francesc Carreras
Computational simulations of the heart are a powerful tool for a comprehensive understanding of cardiac function and its intrinsic relationship with its muscular architecture. Cardiac biomechanical models require a vector field representing the orientation of cardiac fibers. A wrong orientation of the fibers can lead to a non-realistic simulation of the heart functionality. In this paper we explore the impact of the fiber information on the simulated biomechanics of cardiac muscular anatomy. We have used the John Hopkins database to perform a biomechanical simulation using both a synthetic benchmark fiber distribution and the data obtained experimentally from DTI. Results illustrate how differences in fiber orientation affect heart deformation along cardiac cycle.
Abdominal Imaging | 2011
Sergio Vera; Debora Gil; Agnés Borràs; Xavi Sánchez; Frederic Pérez; Marius George Linguraru; Miguel Ángel González Ballester
Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.
iberian conference on pattern recognition and image analysis | 2005
Agnés Borràs; Josep Lladós
This paper presents an image retrieval system based on 2D shape information. Query shape objects and database images are represented by polygonal approximations of their contours. Afterwards they are encoded, using geometric features, in terms of predefined structures. Shapes are then located in database images by a voting procedure on the spatial domain. Then an alignment matching provides a probability value to rank de database image in the retrieval result. The method allows to detect a query object in database images even when they contain complex scenes. Also the shape matching tolerates partial occlusions and affine transformations as translation, rotation or scaling.
Lecture Notes in Computer Science | 2002
Francesc Tous; Agnés Borràs; Robert Benavente; Ramon Baldrich; Maria Vanrell; Josep Lladós
This paper presents a first approach to build colour and structural descriptors for information retrieval on a people database. Queries are formulated in terms of their appearance that allows to seek people wearing specific clothes of a given colour name or texture. Descriptors are automatically computed by following three essential steps. A colour naming labelling from pixel properties. A region segmentation step based on colour properties of pixels combined with edge information. And a high level step that models the region arrangements in order to build clothes structure. Results are tested on large set of images from real scenes taken at the entrance desk of a building.
Healthcare technology letters | 2018
Esmitt Ramírez; Carles Sánchez; Agnés Borràs; Marta Diez-Ferrer; Antoni Rosell; Debora Gil
Virtual bronchoscopy (VB) is a non-invasive exploration tool for intervention planning and navigation of possible pulmonary lesions (PLs). A VB software involves the location of a PL and the calculation of a route, starting from the trachea, to reach it. The selection of a VB software might be a complex process, and there is no consensus in the community of medical software developers in which is the best-suited system to use or framework to choose. The authors present Bronchoscopy Exploration (BronchoX), a VB software to plan biopsy interventions that generate physician-readable instructions to reach the PLs. The authors’ solution is open source, multiplatform, and extensible for future functionalities, designed by their multidisciplinary research and development group. BronchoX is a compound of different algorithms for segmentation, visualisation, and navigation of the respiratory tract. Performed results are a focus on the test the effectiveness of their proposal as an exploration software, also to measure its accuracy as a guiding system to reach PLs. Then, 40 different virtual planning paths were created to guide physicians until distal bronchioles. These results provide a functional software for BronchoX and demonstrate how following simple instructions is possible to reach distal lesions from the trachea.
international conference on computer vision theory and applications | 2017
Carles Sánchez; Antonio Esteban-Lansaque; Agnés Borràs; Marta Diez-Ferrer; Antoni Rosell; Debora Gil
Bronchoscopists use fluoroscopy to guide flexible bronchoscopy to the lesion to be biopsied without any kind of incision. Being fluoroscopy an imaging technique based on X-rays, the risk of developmental problems and cancer is increased in those subjects exposed to its application, so minimizing radiation is crucial. Alternative guiding systems such as electromagnetic navigation require specific equipment, increase the cost of the clinical procedure and still require fluoroscopy. In this paper we propose an image based guiding system based on the extraction of airway centres from intra-operative videos. Such anatomical landmarks are matched to the airway centreline extracted from a pre-planned CT to indicate the best path to the nodule. We present a feasibility study of our navigation system using simulated bronchoscopic videos and a multi-expert validation of landmarks extraction in 3 intra-operative ultrathin explorations.
iberian conference on pattern recognition and image analysis | 2007
Agnés Borràs; Josep Lladós
This work presents a content-based image retrieval system of general purpose that deals with cluttered scenes containing a given query object. The system is flexible enough to handle with a single image of an object despite its rotation, translation and scale variations. The image content is divided in parts that are described with a combination of features based on geometrical and color properties. The idea behind the feature combination is to benefit from a fuzzy similarity computation that provides robustness and tolerance to the retrieval process. The features can be independently computed and the image parts can be easily indexed by using a table structure on every feature value. Finally a process inspired in the alignment strategies is used to check the coherence of the object parts found in a scene. Our work presents a system of easy implementation that uses an open set of features and can suit a wide variety of applications.
Archive | 2018
Esmitt Ramírez; Carles Sánchez; Agnés Borràs; Marta Diez-Ferrer; Antoni Rosell; Debora Gil
Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems.