Agnès Burel
University of Rennes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agnès Burel.
Journal of Negative Results in Biomedicine | 2006
Agnès Burel; Thomas Mouchel; Sylvie Odent; Filiz Tiker; Bertrand Knebelmann; Isabelle Pellerin; Daniel Guerrier
The Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome refers to the congenital absence or severe hypoplasia of the female genital tract, often described as uterovaginal aplasia which is the prime feature of the syndrome. It is the second cause of primary amenorrhea after gonadal dysgenesis and occurs in ~1 in 4500 women. Aetiology of this syndrome remains poorly understood. Frequent association of other malformations with the MRKH syndrome, involving kidneys, skeleton and ears, suggests the involvement of major developmental genes such as those of the HOX family. Indeed mammalian HOX genes are well known for their crucial role during embryogenesis, particularly in axial skeleton, hindbrain and limb development. More recently, their involvement in organogenesis has been demonstrated notably during urogenital differentiation. Although null mutations of HOX genes in animal models do not lead to MRKH-like phenotypes, dominant mutations in their coding sequences or aberrant expression due to mutated regulatory regions could well account for it. Sequence analysis of coding regions of HOX candidate genes and of PBX1, a likely HOX cofactor during Müllerian duct differentiation and kidney morphogenesis, did not reveal any mutation in patients showing various forms of MRKH syndrome. This tends to show that HOX genes are not involved in MRKH syndrome. However it does not exclude that other mechanisms leading to HOX dysfunction may account for the syndrome.
Journal of Hazardous Materials | 2012
Tangi Aubert; Agnès Burel; Marie-Andrée Esnault; Stéphane Cordier; Fabien Grasset; Francisco Cabello-Hurtado
Here are examined the root uptake and phytotoxicity of octahedral hexamolybdenum clusters on rapeseed plants using the solid state compound Cs(2)Mo(6)Br(14) as cluster precursor. [Mo(6)Br(14)](2-) cluster units are nanosized entities offering a strong and stable emission in the near-infrared region with numerous applications in biotechnology. To investigate cluster toxicity on rapeseed plants, two different culture systems have been set up, using either a water-sorbing suspension of cluster aggregates or an ethanol-sorbing solution of dispersed nanosized clusters. Size, shape, surface area and state of clusters in both medium were analyzed by FE-SEM, BET and XPS. The potential contribution of cluster dissolution to phytotoxicity was evaluated by ICP-OES and toxicity analysis of Mo, Br and Cs. We showed that the clusters did not affect seed germination but greatly inhibited plant growth. This inhibition was much more important when plants were treated with nanosized entities than with microsized cluster aggregates. In addition, nanosized clusters affected the root morphology in a different manner than microsized cluster aggregates, as shown by FE-SEM observations. The root penetration of the clusters was followed by secondary ion mass spectroscopy with high spatial resolution (NanoSIMS) and was also found to be much more important for treatments with nanosized clusters.
Mechanisms of Development | 2007
Audrey Laurent; Réjane Bihan; Stéphane Deschamps; Daniel Guerrier; Valérie Dupé; Francis Omilli; Agnès Burel; Isabelle Pellerin
PBX1 belongs to the TALE-class of homeodomain protein and has a wide functional diversity during development. Indeed, PBX1 is required for haematopoiesis as well as for multiple developmental processes such as skeletal patterning and organogenesis. It has furthermore been shown that PBX1 functions as a HOX cofactor during development. More recent data suggest that PBX1 may act even more broadly by modulating the activity of non-homeodomain transcription factors. To better understand molecular mechanisms triggered by PBX1 during female genital tract development, we searched for additional PBX1 partners that might be involved in this process. Using a two hybrid screen, we identified a new PBX1 interacting protein containing several zinc finger motifs that we called ZFPIP for Zinc Finger PBX1 Interacting Protein. We demonstrated that ZFPIP is expressed in embryonic female genital tract but also in other PBX1 expression domains such as the developing head and the limb buds. We further showed that ZFPIP is able to bind physically and in vivo to PBX1 and moreover, that it prevents the binding of HOXA9/PBX complexes to their consensus DNA site. We suggest that ZFPIP is a new type of PBX1 partner that could participate in PBX1 function during several developmental pathways.
Plant Physiology | 2013
Maja Musse; Loriane De Franceschi; Mireille Cambert; Clément Sorin; Françoise Le Cahérec; Agnès Burel; Alain Bouchereau; François Mariette; Laurent Leport
Changes in cell water distribution during leaf senescence in oilseed rape plants are uncovered using NMR relaxometry combined with micrographs and physiological characterization. Nitrogen use efficiency is relatively low in oilseed rape (Brassica napus) due to weak nitrogen remobilization during leaf senescence. Monitoring the kinetics of water distribution associated with the reorganization of cell structures, therefore, would be valuable to improve the characterization of nutrient recycling in leaf tissues and the associated senescence processes. In this study, nuclear magnetic resonance (NMR) relaxometry was used to describe water distribution and status at the cellular level in different leaf ranks of well-watered plants. It was shown to be able to detect slight variations in the evolution of senescence. The NMR results were linked to physiological characterization of the leaves and to light and electron micrographs. A relationship between cell hydration and leaf senescence was revealed and associated with changes in the NMR signal. The relative intensities and the transverse relaxation times of the NMR signal components associated with vacuole water were positively correlated with senescence, describing water uptake and vacuole and cell enlargement. Moreover, the relative intensity of the NMR signal that we assigned to the chloroplast water decreased during the senescence process, in agreement with the decrease in relative chloroplast volume estimated from micrographs. The results are discussed on the basis of water flux occurring at the cellular level during senescence. One of the main applications of this study would be for plant phenotyping, especially for plants under environmental stress such as nitrogen starvation.
Free Radical Biology and Medicine | 2014
Aurore Collin; Kévin Hardonnière; Martine Chevanne; Julie Vuillemin; Normand Podechard; Agnès Burel; Marie-Thérèse Dimanche-Boitrel; Dominique Lagadic-Gossmann; Odile Sergent
Several epidemiologic studies have shown an interactive effect of heavy smoking and heavy alcohol drinking on the development of hepatocellular carcinoma. It has also been recently described that chronic hepatocyte death can trigger excessive compensatory proliferation resulting later in the formation of tumors in mouse liver. As we previously demonstrated that both benzo[a]pyrene (B[a]P), an environmental agent found in cigarette smoke, and ethanol possess similar targets, especially oxidative stress, to trigger death of liver cells, we decided to study here the cellular and molecular mechanisms of the effects of B[a]P/ethanol coexposure on cell death. After an 18-h incubation with 100nM B[a]P, primary rat hepatocytes were supplemented with 50mM ethanol for 5 or 8h. B[a]P/ethanol coexposure led to a greater apoptotic cell death that could be linked to an increase in lipid peroxidation. Plasma membrane remodeling, as depicted by membrane fluidity elevation and physicochemical alterations in lipid rafts, appeared to play a key role, because both toxicants acted with specific complementary effects. Membrane remodeling was shown to induce an accumulation of lysosomes leading to an important increase in low-molecular-weight iron cellular content. Finally, ethanol metabolism, but not that of B[a]P, by providing reactive oxygen species, induced the ultimate toxic process. Indeed, in lysosomes, ethanol promoted the Fenton reaction, lipid peroxidation, and membrane permeabilization, thereby triggering cell death. To conclude, B[a]P exposure, by depleting hepatocyte membrane cholesterol content, would constitute a favorable ground for a later toxic insult such as ethanol intoxication. Membrane stabilization of both plasma membrane and lysosomes might be a potential target for further investigation considering cytoprotective strategies.
Antimicrobial Agents and Chemotherapy | 2014
Muhammad Suleman; Jean-Pierre Gangneux; Laurent Legentil; Sorya Belaz; Yari Cabezas; Christelle Manuel; Rémy Dureau; Odile Sergent; Agnès Burel; Franck Daligault; Vincent Ferrières; Florence Robert-Gangneux
ABSTRACT We investigated the in vitro effects of four alkyl-galactofuranoside derivatives, i.e., octyl-β-d-galactofuranoside (compound 1), 6-amino-β-d-galactofuranoside (compound 2), 6-N-acetamido-β-d-galactofuranoside (compound 3), and 6-azido-β-d-galactofuranoside (compound 4), on Leishmania donovani. Their mechanism of action was explored using electron paramagnetic resonance spectroscopy (EPR) and nuclear magnetic resonance (NMR), and ultrastructural alterations were analyzed by transmission electron microscopy (TEM). Compound 1 showed the most promising effects by inhibiting promastigote growth at a 50% inhibitory concentration (IC50) of 8.96 ± 2.5 μM. All compounds exhibit low toxicity toward human macrophages. Compound 1 had a higher selectivity index than the molecule used for comparison, i.e., miltefosine (159.7 versus 37.9, respectively). EPR showed that compound 1 significantly reduced membrane fluidity compared to control promastigotes and to compound 3. The furanose ring was shown to support this effect, since the isomer galactopyranose had no effect on parasite membrane fluidity or growth. NMR showed a direct interaction of all compounds (greatest with compound 1, followed by compounds 2, 3, and 4, in descending order) with the promastigote membrane and with octyl-galactopyranose and octanol, providing evidence that the n-octyl chain was primarily involved in anchoring with the parasite membrane, followed by the putative crucial role of the furanose ring in the antileishmanial activity. A morphological analysis of compound 1-treated promastigotes by TEM revealed profound alterations in the parasite membrane and organelles, but this was not the case with compound 3. Quantification of annexin V binding by flow cytometry confirmed that compound 1 induced apoptosis in >90% of promastigotes. The effect of compound 1 was also assessed on intramacrophagic amastigotes and showed a reduction in amastigote growth associated with an increase of reactive oxygen species (ROS) production, thus validating its promising effect.
Scientific Reports | 2017
Kévin Hardonnière; Morgane Fernier; Isabelle Gallais; Baharia Mograbi; Normand Podechard; Eric Le Ferrec; Nathalie Grova; Brice M.R. Appenzeller; Agnès Burel; Martine Chevanne; Odile Sergent; Laurence Huc; Sylvie Bortoli; Dominique Lagadic-Gossmann
Most tumors undergo metabolic reprogramming towards glycolysis, the so-called Warburg effect, to support growth and survival. Overexpression of IF1, the physiological inhibitor of the F0F1ATPase, has been related to this phenomenon and appears to be a relevant marker in cancer. Environmental contributions to cancer development are now widely accepted but little is known about the underlying intracellular mechanisms. Among the environmental pollutants humans are commonly exposed to, benzo[a]pyrene (B[a]P), the prototype molecule of polycyclic aromatic hydrocarbons (PAHs), is a well-known human carcinogen. Besides apoptotic signals, B[a]P can also induce survival signals in liver cells, both likely involved in cancer promotion. Our previous works showed that B[a]P elicited a Warburg-like effect, thus favoring cell survival. The present study aimed at further elucidating the molecular mechanisms involved in the B[a]P-induced metabolic reprogramming, by testing the possible involvement of IF1. We presently demonstrate, both in vitro and in vivo, that PAHs, especially B[a]P, strongly increase IF1 expression. Such an increase, which might rely on β2-adrenergic receptor activation, notably participates to the B[a]P-induced glycolytic shift and cell survival in liver cells. By identifying IF1 as a target of PAHs, this study provides new insights about how environmental factors may contribute to related carcinogenesis.
Journal of Nanoparticle Research | 2016
Francisco Cabello-Hurtado; María Dolores Lozano-Baena; Chrystelle Neaime; Agnès Burel; Sylvie Jeanne; Pascal Pellen-Mussi; Stéphane Cordier; Fabien Grasset
As part of the risk evaluation before potential applications of nanomaterials, phytotoxicity of newly designed multifunctional silica nanoparticles (CMB@SiO2, average diameter of 47xa0nm) and their components, i.e., molybdenum octahedral cluster bromide units (CMB, 1xa0nm) and SiO2 nanoparticles (nSiO2, 29xa0nm), has been studied using photosynthetic Arabidopsis thaliana cell suspension cultures. CMB clusters presented toxic effects on plant cells, inhibiting cell growth and negatively affecting cell viability and photosynthetic efficiency. Nevertheless, we showed that neither nSiO2 nor CMB@SiO2 have any significant effect on cell growth and viability or photosynthetic efficiency. At least, part of the harmful impact of CMB clusters could be ascribed to their capacity to generate an oxidative stress since lipid peroxidation greatly increased after CMB exposure, which was not the case for nSiO2 or CMB@SiO2 treatments. Exposure of cells to CMB clusters also leads to the induction of several enzymatic antioxidant activities (i.e., superoxide dismutase, guaiacol peroxidase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase activities) compared to control and the other treatments. Finally, using electron microscopy, we showed that Arabidopsis cells internalize CMB clusters and both silica nanoparticles, the latter through, most likely, endocytosis-like pathway as nanoparticles were mainly found incorporated into vesicles.Graphical Abstract
Langmuir | 2017
H. Sieg; Claudia Kästner; Benjamin Krause; Thomas J. Meyer; Agnès Burel; Linda Böhmert; Dajana Lichtenstein; Harald Jungnickel; Jutta Tentschert; Peter Laux; Albert Braeuning; Irina Estrela-Lopis; Fabienne Gauffre; Valérie Fessard; Jan Meijer; Andreas Luch; Andreas F. Thünemann; Alfonso Lampen
Aluminum has gathered toxicological attention based on relevant human exposure and its suspected hazardous potential. Nanoparticles from food supplements or food contact materials may reach the human gastrointestinal tract. Here, we monitored the physicochemical fate of aluminum-containing nanoparticles and aluminum ions when passaging an in vitro model of the human gastrointestinal tract. Small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), ion beam microscopy (IBM), secondary ion beam mass spectrometry (TOF-SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) in the single-particle mode were employed to characterize two aluminum-containing nanomaterials with different particle core materials (Al0, γAl2O3) and soluble AlCl3. Particle size and shape remained unchanged in saliva, whereas strong agglomeration of both aluminum nanoparticle species was observed at low pH in gastric fluid together with an increased ion release. The levels of free aluminum ions decreased in intestinal fluid and the particles deagglomerated, thus liberating primary particles again. Dissolution of nanoparticles was limited and substantial changes of their shape and size were not detected. The amounts of particle-associated phosphorus, chlorine, potassium, and calcium increased in intestinal fluid, as compared to nanoparticles in standard dispersion. Interestingly, nanoparticles were found in the intestinal fluid after addition of ionic aluminum. We provide a comprehensive characterization of the fate of aluminum nanoparticles in simulated gastrointestinal fluids, demonstrating that orally ingested nanoparticles probably reach the intestinal epithelium. The balance between dissolution and de novo complex formation should be considered when evaluating nanotoxicological experiments.
Development Growth & Differentiation | 2009
Audrey Laurent; Julie Massé; Stéphane Deschamps; Agnès Burel; Francis Omilli; Laurent Richard-Parpaillon; Isabelle Pellerin
ZFPIP/Zfp462 has been recently identified as a new vertebrate zinc finger encoding gene whose product interacts with Pbx1. Previous work indicates that ZFPIP is maternally expressed in Xenopus laevis oocytes and plays a key role during the cleavage phase of embryogenesis. This early expression is followed by a zygotic expression which overlaps with the neural Pbx1 expression pattern, suggesting an interaction between these two partners during Xenopus neurogenesis. In order to test the physiological interaction between ZFPIP and Pbx1, we carried out a dominant negative assay in which the Pbx1 interacting domain of ZFPIP (ZFPIPp) was overexpressed in Xenopus laevis embryos. We observed that ZFPIPp ectopic expression led to abnormal en2 and N‐cam expression patterns, whereas krox‐20 expression was not affected. Furthermore, we showed that while ZFPIPp alone was localized in the nucleus of Cos‐7 cells, additional expression of Pbx1 induced a location of ZFPIPp at the perinuclear region of the cells. These overall data suggest that ZFPIP and Pbx1 could be partners and cooperate in the regulation of essential neural genes during Xenopus development.