Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ágnes Csáki is active.

Publication


Featured researches published by Ágnes Csáki.


Neuroscience | 2000

The supramammillo-hippocampal and supramammillo-septal glutamatergic/aspartatergic projections in the rat: a combined [3H]d-aspartate autoradiographic and immunohistochemical study

Jozsef Zoltan Kiss; Ágnes Csáki; H. Bokor; M. Shanabrough; C. Leranth

It is well established that the supramammillary nucleus plays a critical role in hippocampal theta rhythm generation/regulation by its direct and indirect (via the septal complex) connections to the hippocampus. Previous morphological and electrophysiological studies indicate that both the supramammillo-hippocampal and supramammillo-septal efferents contain excitatory transmitter. To test the validity of this assumption, transmitter specific retrograde tracer experiments were performed. [3H]D-aspartate was injected into different locations of the hippocampus (granular and supragranular layers of the dentate gyrus and CA2 and CA3a areas of the Ammons horn) and septal complex (medial septum and the area between the medial and lateral septum) that are known targets of the supramammillary projection. Consecutive vibratome sections prepared from the entire length of the posterior hypothalamus, including the supramammillary area, were immunostained for calretinin, tyrosine hydroxylase, or calbindin, and further processed for autoradiography. Radiolabeled, radiolabeled plus calretinin-containing, and calretinin-immunoreactive neurons were plotted at six different oro-caudal levels of the supramammillary area. The results demonstrated that following both hippocampal and septal injection of the tracer, the majority of the retrogradely radiolabeled (glutamatergic/aspartatergic) cells are immunoreactive for calretinin. However, non-radiolabeled calretinin-containing neurons and radiolabeled calretinin-immunonegative cells were also seen, albeit at a much lower density. These observations clearly indicate the presence of glutamatergic/aspartatergic projections to both the hippocampus and septal complex. It may be assumed that this transmitter could play a role in hippocampal theta rhythm generation/regulation.


European Journal of Neuroscience | 2002

Localization of putative glutamatergic/aspartatergic neurons projecting to the supraoptic nucleus area of the rat hypothalamus.

Ágnes Csáki; Katalin Kocsis; Jozsef Zoltan Kiss; Béla Halász

Oxytocin and vasopressin neurosecretory neurons of the supraoptic nucleus receive a rich glutamatergic innervation. The nerve cells of this prominent structure express various ionotropic and metabotropic glutamate receptor subtypes and there is converging evidence that glutamate acts as an excitatory transmitter in the control of release of oxytocin and vasopressin synthesized in this cell group. The location of the glutamatergic neurons projecting to this hypothalamic region is unknown. The aim of the present investigation was to study this question. [3H]d‐aspartate, which is selectively taken up by high‐affinity uptake sites at presynaptic endings that use glutamate as a transmitter, and is transported back to the cell body, was injected into the supraoptic nucleus area. The neurons retrogradely labelled with [3H]d‐aspartate were detected autoradiographically. Labelled nerve cells were found in several diencephalic and telencephalic structures, but not in the brainstem. Diencephalic cell groups included the supraoptic nucleus itself, its perinuclear area, hypothalamic paraventricular, suprachiasmatic, ventromedial, dorsomedial, ventral premammillary, supramammillary and thalamic paraventricular nuclei. Within the telencephalon, labelled neurons were detected in the septum, amygdala, bed nucleus of the stria terminalis and preoptic area. The findings provide neuromorphological data on the location of putative glutamatergic neurons projecting to the supraoptic nucleus and its perinuclear area. Furthermore, they indicate that local putative glutamatergic neurons as well as several diencephalic and telencephalic structures contribute to the glutamatergic innervation of the cell group and thus are involved in the control of oxytocin and vasopressin release by neurosecretory neurons of the nucleus.


Neuroscience | 2006

Distribution of hypothalamic, hippocampal and other limbic peptidergic neuronal cell bodies giving rise to retinopetal fibers: Anterograde and retrograde tracing and neuropeptide immunohistochemical studies

V. Vereczki; Katalin Köves; Ágnes Csáki; K. Grósz; G.E. Hoffman; G. Fiskum

In our present work utilizing the retrograde or anterograde transport of tracers (biotinylated dextran amine and Fluorogold, respectively) we have provided direct evidence for the cells of origin of the limboretinal pathway in rats and their termination in the retina using light microscopic approach. Administration of biotinylated dextran amine into the vitreous body resulted in nerve cell body labeling in several structures: the supraoptic and paraventricular nuclei, the hippocampus (CA1, CA3), the dentate gyrus, the indusium griseum, the olfactory tubercle, and the medial habenula, all of them belong to the limbic system. We estimated that the total number of retrogradely labeled cells is 1495+/-516. We have seen fiber labeling in the retinorecipient suprachiasmatic nucleus and in the primary visual center, the lateral geniculate body, but labeled nerve cell bodies in these structures were never seen. Iontophoretic application of Fluorogold into the hippocampal formation, where the major part of the biotinylated dextran amine-labeled cell bodies was observed, resulted in labeled fibers in the optic nerve and in the retina indicating that the retrogradely labeled cells in the hippocampus and the dentate gyrus among others are the cells of origin of the centrifugal visual fibers. Sections showing biotinylated dextran amine labeling were stained for vasoactive intestinal polypeptide, pituitary adenylate cyclase activating polypeptide or luteinizing hormone-releasing hormone immunoreactivity using immunohistochemistry. Some biotinylated dextran amine-labeled cells also showed vasoactive intestinal polypeptide, pituitary adenylate cyclase activating polypeptide or luteinizing hormone-releasing hormone immunoreactivity. We conclude that the limboretinal pathway exists and that the cells of origin are partially vasoactive intestinal polypeptide, pituitary adenylate cyclase activating polypeptide or luteinizing hormone-releasing hormone immunoreactive.


Brain Research Bulletin | 2007

Vesicular glutamate transporter 2 protein and mRNA containing neurons in the hypothalamic suprachiasmatic nucleus of the rat

József Kiss; Béla Halász; Ágnes Csáki; Zsolt Liposits; Erik Hrabovszky

The hypothalamic suprachiasmatic nucleus is the key structure of the control of circadian rhythms and has a rich glutamatergic innervation. Besides the presence of glutamatergic afferents, several findings also suggest the existence of glutamatergic efferents from the suprachiasmatic nucleus to its target neurons in various prominent hypothalamic cell groups. However, there is no direct neuromorphological evidence for the presence of glutamatergic neurons in the suprachiasmatic nucleus. Therefore, the purpose of the present investigations was to try to clarify this question. Immunocytochemistry was used at the light and electron microscopy level to identify vesicular glutamate transporter type 2 (VGluT2) immunopositive (presumed glutamatergic) neurons in the rat suprachiasmatic nucleus. In addition VGluT2 mRNA expression in neurons of the nucleus was also addressed with radioisotopic in situ hybridization. Both at the light and electron microscopy level we detected VGluT2 positive neurons, which did not contain GABA, vasoactive intestinal polypeptide or vasopressin. Further, we demonstrated the expression of VGluT2 mRNA in a few cells within the suprachiasmatic nucleus; these glutamatergic cells were distinct from somatostatin mRNA expressing neurons. As VGluT2 is a selective marker of glutamatergic neuronal elements, the present observations provide direct neuromorphological evidence for the presence of glutamatergic neurons in the cell group.


European Journal of Neuroscience | 2008

Synaptic contacts of vesicular glutamate transporter 2 fibres on chemically identified neurons of the hypothalamic suprachiasmatic nucleus of the rat

József Kiss; Ágnes Csáki; Zsolt Csaba; Béla Halász

The hypothalamic suprachiasmatic nucleus (SCN), which plays a pivotal role in the control of circadian rhythms, consists of several neuronal subpopulations characterized by different neuroactive substances. This prominent cell group has a fairly rich glutamatergic innervation, but the cell types that are targeted by this innervation are unknown. Therefore, the purpose of the present study was to examine the relationship between the afferent glutamatergic axon terminals and the vasoactive intestinal polypeptide (VIP)‐, arginine‐vasopressin (AVP)‐ and γ‐aminobutyric acid (GABA)‐positive neurons of the SCN. Glutamatergic elements were revealed via immunocytochemical double‐labelling for vesicular glutamate transporter type 1 (VGluT1) and type 2 (VGluT2), and brain sections were imaged via confocal laser‐scanning microscopy and electron microscopy. Numerous VGluT2‐immunoreactive axons were observed to be in synaptic contact with VIP‐ and GABA‐positive neurons, and only a few synapses were detected between VGluT2 boutons and AVP neurons. VGluT1 axon terminals exhibiting very moderate distribution in this cell group were observed to be in synaptic contact with chemically unidentified neurons. The findings provide the first morphological data on the termination of presumed glutamatergic fibres on chemically identified neurons of the rat SCN, and indicate that all three prominent cell types of the cell group receive glutamatergic afferents.


Neuroreport | 1997

Metabotropic glutamate receptor in GHRH and β-endorphin neurones of the hypothalamic arcuate nucleus

Jozsef Zoltan Kiss; Katalin Kocsis; Ágnes Csáki; Tamás Görcs; Béla Halász

GROWTH hormone-releasing hormone (GHRH) and β-endorphin are mainly synthesized in neurones of the hypothalamic arcuate nucleus. Arcuate neurones also contain both ionotropic and metabotropic glutamate receptors. The aim of present study was to investigate whether glutamate receptors are present in GHRH and β-endorphin containing nerve cells of this hypothalamic area. Using double-label immunocytochemistry as well as the mirror technique, we found that almost all GHRH and β-endorphin immunoreactive arcuate neurones contain the metabotropic glutamate receptor 1a. The observations provide morphological evidence for the view that glutamate, which appears to be a major excitatory neurotransmitter in the hypothalamus, may directly stimulate GHRH and β-endorphin neurones of the medial hypothalamus.


Neuroscience | 2011

Location of glutamatergic/aspartatergic neurons projecting to the hypothalamic ventromedial nucleus studied by autoradiography of retrogradely transported [3H]d-aspartate

Janos P. Kiss; Ágnes Csáki; Béla Halász

The hypothalamic ventromedial nucleus is a prominent cell group, which is involved in the control of feeding, sexual behavior and cardiovascular function as well as having other functions. The nucleus receives inputs from various forebrain structures and has a dense glutamatergic innervation. The aim of the present investigations was to reveal the location of glutamatergic neurons in the telencephalon and diencephalon projecting to this hypothalamic cell group. [(3)H]d-aspartate retrograde autoradiography was used injecting the tracer into the ventromedial nucleus. We detected radiolabeled neurons in telencephalic structures including the lateral septum, bed nucleus of the stria terminalis and the amygdala, and in various diencephalic regions, such as the medial preoptic area, hypothalamic paraventricular nucleus, periventricular nucleus, anterior hypothalamic area, ventral premamillary nucleus, thalamic paraventricular and parataenial nuclei and in the hypothalamic ventromedial nucleus itself. Our observations are the first data on the location of glutamatergic neurons terminating in the hypothalamic ventromedial nucleus. The findings indicate that glutamatergic innervation of the ventromedial nucleus is very complex.


Neuroscience Letters | 2015

Is a neuronal chain between the pineal body and the retina in rats and hamsters? Transneural tracing studies.

Ágnes Csáki; B. Vigh; Zsolt Boldogkői; Viktoria Vereczki; Ágoston Szél; Katalin Köves

Neuronal chains between the retina and the pineal body were investigated. Transneuronal tracers, retrograde spreading pseudorabies virus (labeled with green fluorescent protein, memGreen-RV) and virus spreading in both ante- and retrograde directions (labeled with red fluorescent protein, Ka-VHS-mCherry-A-RV) were injected into the right eye of vitreous body of intact or bilaterally sympathectomized Wistar male rats. Intact golden hamsters also received memGreen-RV into the eye and Ka-VHS-mCherry-A-RV into the pineal body. Four-five days later the animals were sacrificed. Frozen sections were prepared from the removed structures. In intact rats memGreen-RV resulted in green fluorescent labeling in the trigeminal and the superior cervical ganglia, the lateral horn of the spinal cord, the paraventricular and the suprachiasmatic nuclei, the perifornical region, the ventrolateral medulla, the locus ceruleus, and the raphe nuclei. In sympathectomized rats the labeling was missing from the brainstem but further existed in the hypothalamus. This observation indicates that the hypothalamic labeling is not mediated by the sympathetic system. One labeled neuron in the pineal body was only observed in 2/13 rats. It was independent from the sympathectomy. When the animals received Ka-VHS-mCherry-A-RV the distribution of the labeling was very similar to that of the intact group receiving retrograde virus. In golden hamsters the memGreen-RV labeled structures were seen in similar places as in rats, but virus labeled nerve cell bodies were always seen in the pineal body. Injection of Ka-VHS-mCherry-A-RV into the pineal body of hamsters resulted in labeling of the retina at both sides. It was concluded that the retinopetal neuronal chain in golden hamsters is always present but in rats it is stochastic.


Neuroscience Letters | 2018

Ontogenesis of the pinealo-retinal neuronal connection in albino rats

Ágnes Csáki; Viktoria Vereczki; Ákos Lukáts; Zsolt Boldogkői; Anna Sebestyén; Zita Puskár; Katalin Köves

It was accepted for a long time that in mammals there is only retinofugal neuronal connection between the eye and the pineal body (PB). In our previous paper we described that nerve cells were present in hamster PB and these neurons could establish a reverse connection with the retina through a transsynaptic pathway. In adult albino rats neuronal perikarya were not found. In this present experiment it was examined whether the lack of these nerve cells in the PB of adult rats is the result of an apoptotic phenomenon or the lack of migration during the fetal period. Green fluorescence protein expressing pseudorabies virus, spreading only in retrograde direction, was injected into the vitreous body of rats at various postnatal ages. Virus labeled cell bodies were not observed in the PB of adult rats; however, labeling with gradually decreasing number of cells was present in animals aged 3-6, 13-14, 20, 35 and 41 postnatal days. Injection of virus, spreading in anterograde direction (expressing red fluorescence protein), into the PB of young prepubertal animals resulted in labeling in the retina. This observation indicates that the pinealo-retinal connection in prepubertal period is active. Immunostaining revealed that some of the labeled neuronal perikarya showed activated caspase-3 (an apoptotic marker) immunoreactivity. Our results clearly show that the neurons migrate to the PB and later, during the prepubertal period, they disappear. Caspase-3 immnoreactivity indicates that these cells die off by apoptosis.


Anatomy & Physiology: Current Research | 2016

Recent Research on the Centrifugal Visual System in Mammalian Species

Katalin Köves; Ágnes Csáki; Viktoria Vereczki

Ample evidence indicates that both retinofugal (classical visual and the retino-hypothalamic pathways) and retinopetal connections (centrifugal visual system) are found between the eye and the central nervous system. More than hundred years ago Ramon Y Cajal and Dogiel, whose names are very well known by neuro-anatomists, described the termination pattern of the fibers deriving from the avian central nervous system. However, the location of nerve cell bodies was not known at that time. In the last century many data accumulated about these neurons not only in lower vertebrates but in mammals as well. The structures where the neurons give rise to the centrifugal visual fibres in mammals are the following: reticular formation and raphe nuclei of the midbrain, superior colliculus, pretectum, gray matter of the midbrain, dentate gyrus, CA1 and CA3 regions of the hippocampus, olfactory tubercle, habenula, indusium griseum, hypothalamic supraoptic, Para ventricular and arcuate nuclei, and the lateral hypothalamus. The centrifugal visual fibers enter the optic nerve layer, then reach the inner plexiform layer and terminate in the inner nulear layer of the retina in the vicinity of the amacrine cells. A series of neuropeptides and neurotransmitters was described in the origin of the centrifugal visual system. These are the followings: luteinizing hormone releasing hormone, pituitary adenylate cyclase activating polypeptide, vasoactive intestinal polypeptide, serotonin, histamine and leu-enkephalin. Several hypotheses arose on the function of this system. Centrifugal visual system arising from the histaminergic mammillary neurons modifies the sleep/wake cycle. Hallucinogenic drugs through the limbic system may cause disturbance of visual function and result in seeing visual hallucinations or distorted images.

Collaboration


Dive into the Ágnes Csáki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

József Kiss

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Bokor

Semmelweis University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Vigh

Semmelweis University

View shared research outputs
Top Co-Authors

Avatar

Erik Hrabovszky

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge