Ágnes Ferencz
University of Szeged
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ágnes Ferencz.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2009
Edit Hermesz; Ágnes Ferencz
The monomeric selenoprotein, phospholipid hydroperoxide glutathione peroxidase (GPx4) is an essential member of the antioxidant defense system. This paper describes the identification of two gpx4 genes (gpx4a and gpx4b) from somatic tissues of common carp (Cyprinus carpio). The two sequences exhibited 78% and 79% identity at the DNA and the predicted protein level, respectively. The gpx4a transcript was detected in all examined tissues of unstressed animals, with the highest level in the liver. The gpx4b expression was low relative to that of gpx4a in the liver, heart, muscle and brain, and was virtually undetected in the kidney. However, in the olfactory lobe gpx4b was expressed at a fairly high level, the ratio gpx4a/gpx4b being approximately 2:1. Cold shock and Cd(2+) exposure influenced the gpx4a expression to only a slight extent, whereas gpx4b was greatly down-regulated following Cd(2+) exposure.
Acta Biologica Hungarica | 2012
Ágnes Ferencz; Renáta Juhász; Monica Butnariu; K. Aranka Deér; Ilona S. Varga; János Nemcsók
Heat shock proteins are chaperones that play a pivotal role in controling multiple regulatory pathways such as stress defense, hormone signaling, cell cycle control, cell proliferation and differentiation, and apoptosis. In this study, the expression patterns of four well-known heat shock genes (hsp70, hsc70-1, hsc70-2 and hsp90α) were characterized in the skin, spleen and blood cells of the common carp, under unstressed conditions and after Cd2+ treatment or hypothermia. The examined genes were expressed in a tissue-specific manner: hsc70-2 was expressed constitutively, and was at best only slightly inducible; hsp90α exhibited a high basic expression in all three tissues, whereas hsc70-1 did so only in the blood cells, the expression of hsp70 proved to be below the level of detection in unstressed fish. Cold shock induced the expression of hsp genes in the spleen (hsp90α) and blood cells (hsp70, hsc70-1 and hsp90α), while Cd2+ treatment has no effect on the expression pattern. The highest inducibilities were detected in the skin: for hsp70 an induction of at least 20-fold after cadmium exposure, for hsc70-1 of at least 30-fold and for hsp90α of 3-fold after hypothermia.
Acta Biologica Hungarica | 2010
K. Said Ali; Ágnes Ferencz; J. Nemcsók; Edit Hermesz
Heat shock proteins (HSPs) and metallothioneins (MTs) play important roles in protection against environmental stressors. The present study analyzes and compares the regulation of heat shock ( hsp70, hsc70-1 and hsp90alpha ) and metallothionein (MT-1 and MT-2) genes in the heart of common carp, in response to elevated temperature, cold shock and exposure to several heavy metal ions (As 3+ , Cd 2+ and Cu 2+ ), in whole-animal experiments. Among these metals, arsenate proved to be the most potent inducer of the examined stress genes; the hsp90alpha and MT-1 mRNA levels were elevated 11- and 10-fold, respectively, after a 24-h exposure. In contrast, Cd 2+ at 10 mg/L had no impact on the expression of hsp90alpha , and the MT genes also proved to be rather insensitive to Cd 2+ treatment in the heart: only a 2-2.5-fold induction was observed in response to 10 mg/L Cd 2+ . Heat shock resulted in a transient induction of hsp70 (19-fold) and hsp90alpha (15-fold), while elevated temperature had no effect on the expression of the MTs. Direct cold shock induced hsp70 expression (14-fold), while the hsp90alpha (26-fold) and MT-2 (2-fold) expressions peaked after the recovery period following a direct cold shock. The five stress genes examined in this study exhibited a unique, tissue-specific basal expression pattern and a characteristic sensitivity to metal treatments and temperature shocks.
PLOS ONE | 2014
Dávid Garbaisz; Zsolt Turóczi; Péter Arányi; András Fülöp; Olivér Rosero; Edit Hermesz; Ágnes Ferencz; Gábor Lotz; László Harsányi; Attila Szijártó
Introduction Operation on the infrarenal aorta and large arteries of the lower extremities may cause rhabdomyolysis of the skeletal muscle, which in turn may induce remote kidney injury. NIM-811 (N-metyl-4-isoleucine-cyclosporine) is a mitochondria specific drug, which can prevent ischemic-reperfusion (IR) injury, by inhibiting mitochondrial permeability transition pores (mPTP). Objectives Our aim was to reduce damages in the skeletal muscle and the kidney after IR of the lower limb with NIM-811. Materials and methods Wistar rats underwent 180 minutes of bilateral lower limb ischemia and 240 minutes of reperfusion. Four animal groups were formed called Sham (receiving vehicle and sham surgery), NIM-Sham (receiving NIM-811 and sham surgery), IR (receiving vehicle and surgery), and NIM-IR (receiving NIM-811 and surgery). Serum, urine and histological samples were taken at the end of reperfusion. NADH-tetrazolium staining, muscle Wet/Dry (W/D) ratio calculations, laser Doppler-flowmetry (LDF) and mean arterial pressure (MAP) monitoring were performed. Renal peroxynitrite concentration, serum TNF-α and IL-6 levels were measured. Results Less significant histopathological changes were observable in the NIM-IR group as compared with the IR group. Serum K+ and necroenzyme levels were significantly lower in the NIM-IR group than in the IR group (LDH: p<0.001; CK: p<0.001; K+: p = 0.017). Muscle mitochondrial viability proved to be significantly higher (p = 0.001) and renal function parameters were significantly better (creatinine: p = 0.016; FENa: p<0.001) in the NIM-IR group in comparison to the IR group. Serum TNF-α and IL-6 levels were significantly lower (TNF-α: p = 0.003, IL-6: p = 0.040) as well as W/D ratio and peroxynitrite concentration were significantly lower (p = 0.014; p<0.001) in the NIM-IR group than in the IR group. Conclusion NIM-811 could have the potential of reducing rhabdomyolysis and impairment of the kidney after lower limb IR injury.
Nutritional Neuroscience | 2016
Kitti Sárközi; András Papp; Edina Horváth; Zsuzsanna Máté; Ágnes Ferencz; Edit Hermesz; Judit Krisch; Edit Paulik; Andrea Szabó
Background/objectives: Nervous system damage is one of the consequences of oral exposure to waterborne inorganic arsenic. In this work, the role of oxidative status in the neurotoxicity of arsenic and the possible role of two foodborne antioxidants in ameliorating arsenic-related oxidative stress were investigated. Methods: Male Wistar rats were given 10 mg/kg b.w. of trivalent inorganic arsenic (in the form of NaAsO2), 5 day/week for 6 weeks by gavage, combined with vitamin C solution (1 g/l) or green tea infusion (2.5 g in 500 ml boiled water) as antioxidants given in the drinking fluid. Results: Body weight gain was reduced by arsenic from the second week and the antioxidants had no effect on that. Cortical evoked potentials had increased latency, tail nerve conduction velocity was reduced, and this latter effect was counteracted by the antioxidants. The effect of green tea was stronger than that of vitamin C, and green tea also diminished lipid peroxidation induced by As. There was fair correlation between brain As levels, electrophysiological changes, and lipid peroxidation, suggesting a causal relationship. Discussion: Natural antioxidants might be useful in the protection of the central nervous system against the toxicity of oral As.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2008
Ágnes Ferencz; Edit Hermesz
The Metal-responsive Transcription Factor (MTF-1) serves as an essential regulator of Zn(2+) homeostasis via the activation of metallothionein gene expression. Only a single mtf-1 gene has been identified in any organism investigated previously. We report here the first evidence of the existence of two genes encoding MTF-1 proteins (mtf-1.1 and mtf-1.2). The expression patterns were followed in the liver, kidney, muscle, brain and heart by means of Northern hybridization and reverse transcription coupled polymerase chain reactions (RT-PCR). mtf-1.1 mRNA was detected in all tissues examined, with the highest level in the brain, and the lowest in the kidney and the liver. mtf-1.2 expression was detected exclusively in the brain. Cold shock and Cd(2+) exposure influence the gene expression at the transcriptional level, in a stress-specific manner.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2013
Krisztina N. Dugmonits; Ágnes Ferencz; Zsanett Jancsó; Renáta Juhász; Edit Hermesz
This study is related to the accumulation of Cd(2+), its effects on oxidative stress biomarkers and its role in macromolecule damage in liver and kidney of common carp. We present evidence of an increased ratio of reduced to oxidized glutathione (GSH/GSSG) in both organs after 10 mg/L Cd(2+) exposure, with different underlying biological mechanisms and consequences. In the liver, the expressions and/or activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase increased to cope with the Cd(2+)-generated toxic effects during the first 48 h of treatment. In contrast, none of these selected antioxidant markers was significantly altered in the kidney, whereas the expression of glutathione synthetase was upregulated. These results suggest that the major defense mechanism provoked by Cd(2+) exposure involves the regeneration of GSH in the liver, while its de novo synthesis predominates in the kidney. High levels of accumulation of Cd(2+) and peroxynitrite anion (ONOO(-)) were detected in the kidney; the major consequences of ONOO(-) toxicity were enhanced lipid peroxidation and GSH depletion. The accumulation of ONOO(-) in the kidney suggests intensive production of NO and the development of nitrosative stress. In the liver the level of hydrogen peroxide was elevated.
Life Sciences | 2012
Szabolcs Ábrahám; Edit Hermesz; Andrea Szabó; Ágnes Ferencz; Zsanett Jancsó; Ernő Duda; Magdolna Ábrahám; György Lázár
AIMS Heme oxygenase (HO) and metallothionein (MT) genes are rapidly upregulated in the liver by pro-inflammatory cytokines and/or endotoxin as protection against cellular stress and inflammation. Gadolinium chloride (GdCl₃)-induced Kupffer cell blockade has beneficial consequences in endotoxemia following bile duct ligation. Herein we further characterized the effects of Kupffer cell inhibition on the activation of the antioxidant defense system (HO and MT gene expressions, and antioxidant enzyme activities) in response to endotoxemia and obstructive jaundice. MAIN METHODS The isoform-specific expression of MT and HO genes was assessed (RT-PCR) in rat livers following 3-day bile duct ligation, 2-h lipopolysaccharide treatment (1mg/kg) or their combination, with or without GdCl₃ pretreatment (10 mg/kg, 24h before endotoxin). Lipid peroxidation, DNA damage and hepatic antioxidant enzyme activities were also assessed. KEY FINDINGS All these challenges induced similar extents of DNA damage, whereas the lipid peroxidation increased only when endotoxemia was combined with biliary obstruction. The MT and HO mRNA levels displayed isoform-specific changes: those of MT-1 and HO-2 did not change appreciably, whereas those of MT-2 and HO-1 increased significantly in 2-h endotoxemia, with or without obstructive jaundice. Among the enzymes reflecting the endogenous protective mechanisms, the catalase and copper/zinc-superoxide dismutase levels decreased, while that of Mn-SOD slightly increased. Interestingly, GdCl₃ alone induced lipid peroxidation, DNA damage and MT-2 expression. In response to GdCl₃, HO-1 induction was significantly lower in each model. SIGNIFICANCE Despite its moderate hepatocellular toxicity, the ameliorated stress-induced hepatic reactions provided by GdCl₃ may contribute to its protective effects.
Acta Biologica Hungarica | 2009
K. Ali; Ágnes Ferencz; Aranka Kiss Deér; J. Nemcsók; Edit Hermesz
The expression pattern of two metallothionein (MT) genes in response to temperature shock and exposure to Cd(2+) was investigated in the brain of common carp ( Cyprinus carpio ), in whole-animal experiments. The changes in the levels of MT-1 and MT-2 mRNA in the olfactory lobe, midbrain and cerebellum were followed by semiquantitative RT-PCR. The inducibility of the two MT genes was brain region and stressor-specific. Cd(2+) affected mostly the expression of MT-2, while the level of the MT-1 transcript did not change significantly in any of the brain regions examined. Moreover, the MT-2 expression was regulated spatially; MT-2 was induced significantly more strongly in the olfactory lobe than in the cerebellum or midbrain. A sudden temperature drop mainly affected the expression of the MT-1 gene; after 5 h of cold shock, the MT-1 mRNA level was about 25% of the basal value in the cerebellum and the midbrain region. The MT-2 expression did not change significantly during this treatment.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2009
Ágnes Ferencz; Edit Hermesz
Transactivation of the expression of metallothionein genes involves the Metal-responsive Transcription Factor (MTF-1). We report here the identification of mtf-1.1a, the first known splice variant of mtf-1.1 mRNA, in common carp (Cyprinus carpio). The lack of a 103 nt internal segment results in a frame shift, causing the early termination of translation. mtf-1.1a mRNA encodes a protein consisting of the first 349 amino acids of MTF-1.1 plus an additional 64 amino acids, with no significant similarity to any of the proteins in the databases. The predicted MTF-1.1a protein carries the Zn-finger domain and the nuclear exporting and nuclear localization signals, and lacks the transcription activation domains. mtf-1.1a was detected in all tissues examined but the liver, with the highest level in the brain. Arsenic alters the levels of both mtf-1.1 and mtf-1.1a transcripts, in an isoform- and tissue-specific manner.