Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agnes Grallert is active.

Publication


Featured researches published by Agnes Grallert.


Molecular & Cellular Proteomics | 2005

Multiple Reaction Monitoring to Identify Sites of Protein Phosphorylation with High Sensitivity

Richard D. Unwin; John R. Griffiths; Michael K. Leverentz; Agnes Grallert; Iain M. Hagan; Anthony D. Whetton

Phosphorylation governs the activity of many proteins. Insight into molecular mechanisms in biology would be immensely improved by robust, sensitive methods for identifying precisely sites of phosphate addition. An approach to selective mapping of protein phosphorylation sites on a specific target protein of interest using LC-MS is described here. In this approach multiple reaction monitoring is used as an extremely sensitive MS survey scan for potential phosphopeptides from a known protein. This is automatically followed by peptide sequencing and subsequent location of the phosphorylation site; both of these steps occur in a single LC-MS run, providing greater efficiency of sample use. The method is capable of detecting and sequencing phosphopeptides at low femtomole levels with high selectivity. As proof of the value of this approach in an experimental setting, a key Schizosaccharomyces pombe cell cycle regulatory protein, Cyclin B, was purified, and associated proteins were identified. Phosphorylation sites on these proteins were located. The technique, which we have called multiple reaction monitoring-initiated detection and sequencing (MIDAS), is shown to be a highly sensitive approach to the determination of protein phosphorylation.


The EMBO Journal | 2002

Schizosaccharomyces pombe NIMA‐related kinase, Fin1, regulates spindle formation and an affinity of Polo for the SPB

Agnes Grallert; Iain M. Hagan

The Aspergillus nidulans protein kinase NIMA regulates mitotic commitment, while the human and Xenopus equivalents influence centrosome function. Two recessive, temperature‐sensitive mutations in the Schizosaccharomyces pombe NIMA homologue, Fin1, blocked spindle formation at 37°C. One of the two spindle pole bodies (SPBs) failed to nucleate microtubules. This phenotype was reduced by accelerating mitotic commitment through genetic inhibition of Wee1 or activation of either Cdc25 or Cdc2. Polo kinase (Plo1) normally associates with the SPB of mitotic, but not interphase cells. cut12.s11 is a dominant mutation in an SPB component that both suppresses cdc25 mutants and promotes Plo1 association with the interphase SPB. Both cut12.s11 phenotypes were abolished by removing Fin1 function. Elevating Fin1 levels promoted Plo1 recruitment to the interphase SPB of wild‐type cells and reduced the severity of the cdc25.22 phenotype. These data are consistent with Fin1 regulating Plo1 function during mitotic commitment. The fin1 mitotic commitment and spindle phenotypes resemble distinct nimA phenotypes in different systems and suggest that the function of this family of kinases may be conserved across species.


Nature | 2015

A PP1-PP2A phosphatase relay controls mitotic progression

Agnes Grallert; Elvan Boke; Anja Hagting; Ben Hodgson; Yvonne Connolly; John R. Griffiths; Duncan L. Smith; Jonathon Pines; Iain M. Hagan

The widespread reorganization of cellular architecture in mitosis is achieved through extensive protein phosphorylation, driven by the coordinated activation of a mitotic kinase network and repression of counteracting phosphatases. Phosphatase activity must subsequently be restored to promote mitotic exit. Although Cdc14 phosphatase drives this reversal in budding yeast, protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) activities have each been independently linked to mitotic exit control in other eukaryotes. Here we describe a mitotic phosphatase relay in which PP1 reactivation is required for the reactivation of both PP2A-B55 and PP2A-B56 to coordinate mitotic progression and exit in fission yeast. The staged recruitment of PP1 (the Dis2 isoform) to the regulatory subunits of the PP2A-B55 and PP2A-B56 (B55 also known as Pab1; B56 also known as Par1) holoenzymes sequentially activates each phosphatase. The pathway is blocked in early mitosis because the Cdk1–cyclin B kinase (Cdk1 also known as Cdc2) inhibits PP1 activity, but declining cyclin B levels later in mitosis permit PP1 to auto-reactivate. PP1 first reactivates PP2A-B55; this enables PP2A-B55 in turn to promote the reactivation of PP2A-B56 by dephosphorylating a PP1-docking site in PP2A-B56, thereby promoting the recruitment of PP1. PP1 recruitment to human, mitotic PP2A-B56 holoenzymes and the sequences of these conserved PP1-docking motifs suggest that PP1 regulates PP2A-B55 and PP2A-B56 activities in a variety of signalling contexts throughout eukaryotes.


Journal of Cell Science | 2007

Schizosaccharomyces pombe protein phosphatase 1 in mitosis, endocytosis and a partnership with Wsh3/Tea4 to control polarised growth.

Isabel Alvarez-Tabarés; Agnes Grallert; Jose M. Ortiz; Iain M. Hagan

PP1 holoenzymes are composed of a small number of catalytic subunits and an array of regulatory, targeting, subunits. The Schizosaccharomyces pombe genome encodes two highly related catalytic subunits, Dis2 and Sds21. The gene for either protein can be individually deleted, however, simultaneous deletion of both is lethal. We fused enhanced green fluorescent protein (EGFP) coding sequences to the 5′ end of the endogenous sds21+ and dis2+ genes. Dis2.NEGFP accumulated in nuclei, associated with centromeres, foci at cell tips and endocytic vesicles. This actin-dependent endocytosis occurred between nuclei and growing tips and was polarised towards growing tips. When dis2+ was present, Sds21.NEGFP was predominantly a nuclear protein, greatly enriched in the nucleolus. When dis2+ was deleted, Sds21.NEGFP levels increased and Sds21.NEGFP was then clearly detected at centromeres, endocytic vesicles and cell tips. Dis2.NEGFP was recruited to cell tips by the formin binding, stress pathway scaffold Wsh3 (also known as Tea4). Wsh3/Tea4 modulates polarised tip growth in unperturbed cell cycles and governs polarised growth following osmotic stress. Mutating the PP1 recruiting RVXF motif in Wsh3/Tea4 blocked PP1 binding, altered cell cycle regulated growth to induce branching, induced branching from existing tips in response to stress, and blocked the induction of actin filaments that would otherwise arise from Wsh3/Tea4 overproduction.


Molecular Systems Biology | 2014

Programmed fluctuations in sense/antisense transcript ratios drive sexual differentiation in S. pombe.

Danny A Bitton; Agnes Grallert; Paul J. Scutt; Tim Yates; Yaoyong Li; James R. Bradford; Yvonne Hey; Stuart D Pepper; Iain M. Hagan; Crispin J. Miller

Strand‐specific RNA sequencing of S. pombe revealed a highly structured programme of ncRNA expression at over 600 loci. Waves of antisense transcription accompanied sexual differentiation. A substantial proportion of ncRNA arose from mechanisms previously considered to be largely artefactual, including improper 3′ termination and bidirectional transcription. Constitutive induction of the entire spk1+, spo4+, dis1+ and spo6+ antisense transcripts from an integrated, ectopic, locus disrupted their respective meiotic functions. This ability of antisense transcripts to disrupt gene function when expressed in trans suggests that cis production at native loci during sexual differentiation may also control gene function. Consistently, insertion of a marker gene adjacent to the dis1+ antisense start site mimicked ectopic antisense expression in reducing the levels of this microtubule regulator and abolishing the microtubule‐dependent ‘horsetail’ stage of meiosis. Antisense production had no impact at any of these loci when the RNA interference (RNAi) machinery was removed. Thus, far from being simply ‘genome chatter’, this extensive ncRNA landscape constitutes a fundamental component in the controls that drive the complex programme of sexual differentiation in S. pombe.


Journal of Cell Biology | 2011

Brr6 drives the Schizosaccharomyces pombe spindle pole body nuclear envelope insertion/extrusion cycle

Tiina Tamm; Agnes Grallert; Emily P.S. Grossman; Isabel Alvarez-Tabarés; Frances E. Stevens; Iain M. Hagan

The fission yeast interphase spindle pole body (SPB) is a bipartite structure in which a bulky cytoplasmic domain is separated from a nuclear component by the nuclear envelope. During mitosis, the SPB is incorporated into a fenestra that forms within the envelope during mitotic commitment. Closure of this fenestra during anaphase B/mitotic exit returns the cytoplasmic component to the cytoplasmic face of an intact interphase nuclear envelope. Here we show that Brr6 is transiently recruited to SPBs at both SPB insertion and extrusion. Brr6 is required for both SPB insertion and nuclear envelope integrity during anaphase B/mitotic exit. Genetic interactions with apq12 and defective sterol assimilation suggest that Brr6 may alter envelope composition at SPBs to promote SPB insertion and extrusion. The restriction of the Brr6 domain to eukaryotes that use a polar fenestra in an otherwise closed mitosis suggests a conserved role in fenestration to enable a single microtubule organizing center to nucleate both cytoplasmic and nuclear microtubules on opposing sides of the nuclear envelope.


Genetics | 2011

Augmented annotation of the Schizosaccharomyces pombe genome reveals additional genes required for growth and viability.

Danny A Bitton; Valerie Wood; Paul J. Scutt; Agnes Grallert; Tim Yates; Duncan L. Smith; Iain M. Hagan; Crispin J. Miller

Genome annotation is a synthesis of computational prediction and experimental evidence. Small genes are notoriously difficult to detect because the patterns used to identify them are often indistinguishable from chance occurrences, leading to an arbitrary cutoff threshold for the length of a protein-coding gene identified solely by in silico analysis. We report a systematic reappraisal of the Schizosaccharomyces pombe genome that ignores thresholds. A complete six-frame translation was compared to a proteome data set, the Pfam domain database, and the genomes of six other fungi. Thirty-nine novel loci were identified. RT-PCR and RNA-Seq confirmed transcription at 38 loci; 33 novel gene structures were delineated by 5′ and 3′ RACE. Expression levels of 14 transcripts fluctuated during meiosis. Translational evidence for 10 genes, evolutionary conservation data supporting 35 predictions, and distinct phenotypes upon ORF deletion (one essential, four slow-growth, two delayed-division phenotypes) suggest that all 39 predictions encode functional proteins. The popularity of S. pombe as a model organism suggests that this augmented annotation will be of interest in diverse areas of molecular and cellular biology, while the generality of the approach suggests widespread applicability to other genomes.


Current Biology | 2012

Transient structure associated with the spindle pole body directs meiotic microtubule reorganization in S. pombe.

Charlotta Funaya; S. Samarasinghe; Sabine Pruggnaller; Midori Ohta; Yvonne Connolly; Jan Müller; Hiroshi Murakami; Agnes Grallert; Masayuki Yamamoto; Duncan L. Smith; Claude Antony; Kayoko Tanaka

Summary Background Vigorous chromosome movements driven by cytoskeletal assemblies are a widely conserved feature of sexual differentiation to facilitate meiotic recombination. In fission yeast, this process involves the dramatic conversion of arrays of cytoplasmic microtubules (MTs), generated from multiple MT organizing centers (MTOCs), into a single radial MT (rMT) array associated with the spindle pole body (SPB), the major MTOC during meiotic prophase. The rMT is then dissolved upon the onset of meiosis I when a bipolar spindle emerges to conduct chromosome segregation. Structural features and molecular mechanisms that govern these dynamic MT rearrangements are poorly understood. Results Electron tomography of the SPBs showed that the rMT emanates from a newly recognized amorphous structure, which we term the rMTOC. The rMTOC, which resides at the cytoplasmic side of the SPB, is highly enriched in γ-tubulin reminiscent of the pericentriolar material of higher eukaryotic centrosomes. Formation of the rMTOC depends on Hrs1/Mcp6, a meiosis-specific SPB component that is located at the rMTOC. At the onset of meiosis I, Hrs1/Mcp6 is subject to strict downregulation by both proteasome-dependent degradation and phosphorylation leading to complete inactivation of the rMTOC. This ensures rMT dissolution and bipolar spindle formation. Conclusions Our study reveals the molecular basis for the transient generation of a novel MTOC, which triggers a program of MT rearrangement that is required for meiotic differentiation.


PLOS ONE | 2014

Extending the Schizosaccharomyces pombe molecular genetic toolbox.

Dorota Fennessy; Agnes Grallert; Andrea Krapp; Adisa Cokoja; Alan Bridge; Janni Petersen; Avinash Patel; Victor A. Tallada; Elvan Boke; Ben Hodgson; Viesturs Simanis; Iain M. Hagan

Targeted alteration of the genome lies at the heart of the exploitation of S. pombe as a model system. The rate of analysis is often determined by the efficiency with which a target locus can be manipulated. For most loci this is not a problem, however for some loci, such as fin1 +, rates of gene targeting below 5% can limit the scope and scale of manipulations that are feasible within a reasonable time frame. We now describe a simple modification of transformation procedure for directing integration of genomic sequences that leads to a 5-fold increase in the transformation efficiency when antibiotic based dominant selection markers are used. We also show that removal of the pku70 + and pku80 + genes, which encode DNA end binding proteins required for the non-homologous end joining DNA repair pathway, increases the efficiency of gene targeting at fin1 + to around 75–80% (a 16-fold increase). We describe how a natMX6/rpl42 + cassette can be used for positive and negative selection for integration at a targeted locus. To facilitate the evaluation of the impact of a series of mutations on the function of a gene of interest we have generated three vector series that rely upon different selectable markers to direct the expression of tagged/untagged molecules from distinct genomic integration sites. pINTL and pINTK vectors use ura4 + selection to direct disruptive integration of leu1 + and lys1 + respectively, while pINTH vectors exploit nourseothricin resistance to detect the targeted disruption of a hygromycin B resistance conferring hphMX6 cassette that has been integrated on chromosome III. Finally, we have generated a series of multi-copy expression vectors that use resistance to nourseothricin or kanamycin/G418 to select for propagation in prototrophic hosts. Collectively these protocol modifications and vectors extend the versatility of this key model system.


Journal of Cell Science | 2007

In vivo movement of the type V myosin Myo52 requires dimerisation but is independent of the neck domain

Agnes Grallert; Rebeca Martín-García; Steven Bagley; Daniel P. Mulvihill

Intracellular movement is a fundamental property of all cell types. Many organelles and molecules are actively transported throughout the cytoplasm by molecular motors, such as the dimeric type V myosins. These possess a long neck, which contains an IQ motif, that allow it to make 36-nm steps along the actin polymer. Live cell imaging of the fission yeast type V myosin Myo52 reveals that the protein moves rapidly throughout the cytoplasm. Here, we describe analysis of this movement and have established that Myo52 moves long distances on actin filaments in an ATP-dependent manner at ∼0.5 μm/second. Myo51 and the microtubule cytoskeleton have no discernable role in modulating Myo52 movements, whereas rigour mutations in Myo52 abrogated its movement. We go on to show that, although dimerisation is required for Myo52 movement, deleting its neck has no discernable affect on Myo52 function or velocity in vivo.

Collaboration


Dive into the Agnes Grallert's collaboration.

Top Co-Authors

Avatar

Iain M. Hagan

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven Bagley

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuan Yoow Chan

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Avinash Patel

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge