Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ágnes Simon is active.

Publication


Featured researches published by Ágnes Simon.


Nature Chemical Biology | 2013

Mechanism-based corrector combination restores ΔF508-CFTR folding and function

Tsukasa Okiyoneda; Guido Veit; J.F. Dekkers; Miklos Bagdany; Naoto Soya; Haijin Xu; Ariel Roldan; A. S. Verkman; Mark J. Kurth; Ágnes Simon; Tamás Hegedüs; Jeffrey M. Beekman; Gergely L. Lukacs

The most common cystic fibrosis mutation, ΔF508 in nucleotide binding domain 1 (NBD1), impairs cystic fibrosis transmembrane conductance regulator (CFTR)-coupled domain folding, plasma membrane expression, function and stability. VX-809, a promising investigational corrector of ΔF508-CFTR misprocessing, has limited clinical benefit and an incompletely understood mechanism, hampering drug development. Given the effect of second-site suppressor mutations, robust ΔF508-CFTR correction most likely requires stabilization of NBD1 energetics and the interface between membrane-spanning domains (MSDs) and NBD1, which are both established primary conformational defects. Here we elucidate the molecular targets of available correctors: class I stabilizes the NBD1-MSD1 and NBD1-MSD2 interfaces, and class II targets NBD2. Only chemical chaperones, surrogates of class III correctors, stabilize human ΔF508-NBD1. Although VX-809 can correct missense mutations primarily destabilizing the NBD1-MSD1/2 interface, functional plasma membrane expression of ΔF508-CFTR also requires compounds that counteract the NBD1 and NBD2 stability defects in cystic fibrosis bronchial epithelial cells and intestinal organoids. Thus, the combination of structure-guided correctors represents an effective approach for cystic fibrosis therapy.


Biophysical Journal | 2000

Function-related regulation of the stability of MHC proteins.

Ágnes Simon; Zsuzsanna Dosztányi; Éva Rajnavölgyi; István Simon

Proteins must be stable to accomplish their biological function and to avoid enzymatic degradation. Constitutive proteolysis, however, is the main source of free amino acids used for de novo protein synthesis. In this paper the delicate balance of protein stability and degradability is discussed in the context of function of major histocompatibility complex (MHC) encoded protein. Classical MHC proteins are single-use peptide transporters that carry proteolytic degradation products to the cell surface for presenting them to T cells. These proteins fulfill their function as long as they bind their dissociable ligand, the peptide. Ligand-free MHC molecules on the cell surface are practically useless for their primary biological function, but may acquire novel activity or become an important source of amino acids when they lose their compact stable structure, which resists proteolytic attacks. We show in this paper that one or more of the stabilization centers responsible for the stability of MHC-peptide complexes is composed of residues of both the protein and the peptide, therefore missing in the ligand-free protein. This arrangement of stabilization centers provides a simple means of regulation; it makes the useful form of the protein stable, whereas the useless form of the same protein is unstable and therefore degradable.


Nanotoxicology | 2012

Assessing toxicity of polyamidoamine dendrimers by neuronal signaling functions

Gabriella Nyitrai; Orsolya Kékesi; Ildikó Pál; Péter Keglevich; Zsuzsánna Csíki; Péter Fügedi; Ágnes Simon; Ilona Fitos; Krisztina Németh; Júlia Visy; Gábor Tárkányi; Julianna Kardos

Abstract We report for the first time on neuronal signaling for the evaluation of interactions between native plasmamembrane and polyamidoamine (PAMAM) dendrimers. Generation 5 polycationic (G5-NH2), novel β-D-glucopyranose-conjugated G5-NH2 and generation 4.5 polyanionic (G4.5-COONa) polyamidoamine (PAMAM) dendrimers (1–0.0001 mg/ml) were applied in acute brain slices. Functional toxicity assessments–validated by fluorescence imaging of dead cells–were performed by employing electrophysiological indicators of plasma membrane breakdown and synaptic transmission relapse. Irreversible membrane depolarization and decrease of membrane resistance predicted substantial functional neurotoxicity of unmodified G5-NH2, but not of the G4.5-COONa PAMAM dendrimers. Model calculations suggested that freely moving protonated NH2 groups of terminal monomeric units of PAMAM dendrimers may be able directly destroy the membrane or inhibit important K+ channel function via contacting the positively charged NH2. In accordance, conjugation of surface amino groups by β-D-glucopyranose units reduced functional neurotoxicity that may hold great potential for biomedical applications.


Biochimica et Biophysica Acta | 2013

Sodium selective ion channel formation in living cell membranes by polyamidoamine dendrimer

Gabriella Nyitrai; Tamás Keszthelyi; Attila Bóta; Ágnes Simon; Orsolya Tőke; Gergő Horváth; Ildikó Pál; Julianna Kardos; László Héja

Polyamidoamine (PAMAM) dendrimers are highly charged hyperbranched protein-like polymers that are known to interact with cell membranes. In order to disclose the mechanisms of dendrimer-membrane interaction, we monitored the effect of PAMAM generation five (G5) dendrimer on the membrane permeability of living neuronal cells followed by exploring the underlying structural changes with infrared-visible sum frequency vibrational spectroscopy (SVFS), small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). G5 dendrimers were demonstrated to irreversibly increase the membrane permeability of neurons that could be blocked in low-[Na(+)], but not in low-[Ca(2+)] media suggesting the formation of specific Na(+) permeable channels. SFVS measurements on silica supported DPPG-DPPC bilayers suggested G5-specific trans-polarization of the membrane. SAXS data and freeze-fracture TEM imaging of self-organized DPPC vesicle systems demonstrated disruption of DPPC vesicle layers by G5 through polar interactions between G5 terminal amino groups and the anionic head groups of DPPC. We propose a nanoscale mechanism by which G5 incorporates into the membrane through multiple polar interactions that disrupt proximate membrane bilayer and shape a unique hydrophilic Na(+) ion permeable channel around the dendrimer. In addition, we tested whether these artificial Na(+) channels can be exploited as antibiotic tools. We showed that G5 quickly arrest the growth of resistant bacterial strains below 10μg/ml concentration, while they show no detrimental effect on red blood cell viability, offering the chance for the development of new generation anti-resistant antibiotics.


Current Medicinal Chemistry | 2010

Assessing Structure, Function and Druggability of Major Inhibitory Neurotransmitter γ-Aminobutyrate Symporter Subtypes

Julianna Kardos; A. Pallo; Ákos Bencsura; Ágnes Simon

Ambient level of gamma -aminobutyric acid (GABA), the major inhibitory neurotransmitter of the brain is mediated by neuronal and glial GABA transporters (GATs), members of the sodium and chloride ion-dependent solute carrier family. The neuronal GABA transporter subtype (GAT-1) has already been proven to be the target for the antiepileptic drug Tiagabine. However, druggability of glial GAT-2 and GAT-3 is yet to be established. Recent advances in structure elucidation of a bacterial orthologue leucine transporter in complex with different substrates substantiate homology modeling of human GATs (hGATs). These modeling studies can provide mechanistic clues for structure-based prediction of the potential of medicinal chemistry campaigns. A recently identified characteristic structural feature of the occluded conformation of hGATs is that similar extra- and intracellular gates are formed by middle-broken transmembrane helices TM1 and TM6. Binding crevice formed by unwound segments of broken helices facilitates symport of GABA with Na+ ion via fitting of GABA to TM1-bound Na+ closely inside. Favored accommodation of substrate inhibitors with high docking score predicts efficient inhibition of the neuronal hGAT-1 if the TM1-TM8 binding prerequisite for GABA was used. Docking, molecular dynamics and transport data indicate, that amino acids participating in substrate binding of the neuronal hGAT-1 and the glial hGAT-2 and hGAT-3 subtypes are different. By contrast, substrate binding crevices of hGAT-2 and hGAT-3 cannot be distinguished, avoiding sensible prediction of efficient selective substrate inhibitors. Glial subtypes might be specifically distinguished by interfering Zn2+ binding in the second extracellular loop of hGAT-3. Formation of the unique ring-like Na+-GABA complex in the occluded binding crevices anticipates family member symporters exploring chemiosmotic energy via reversible chemical coupling of Na+ ion.


Biochemical and Biophysical Research Communications | 2009

Substrate-Na+ complex formation: Coupling mechanism for γ-aminobutyrate symporters

Anna Palló; Ágnes Simon; Ákos Bencsura; László Héja; Julianna Kardos

Crystal structures of transmembrane transport proteins belonging to the important families of neurotransmitter-sodium symporters reveal how they transport neurotransmitters across membranes. Substrate-induced structural conformations of gated neurotransmitter-sodium symporters have been in the focus of research, however, a key question concerning the mechanism of Na(+) ion coupling remained unanswered. Homology models of human glial transporter subtypes of the major inhibitory neurotransmitter gamma-aminobutyric acid were built. In accordance with selectivity data for subtype 2 vs. 3, docking and molecular dynamics calculations suggest similar orthosteric substrate (inhibitor) conformations and binding crevices but distinguishable allosteric Zn(2+) ion binding motifs. Considering the occluded conformational states of glial human gamma-aminobutyric acid transporter subtypes, we found major semi-extended and minor ring-like conformations of zwitterionic gamma-aminobutyric acid in complex with Na(+) ion. The existence of the minor ring-like conformation of gamma-aminobutyric acid in complex with Na(+) ion may be attributed to the strengthening of the intramolecular H-bond by the electrostatic effect of Na(+) ion. Coupling substrate uptake into cells with the thermodynamically favorable Na(+) ion movement through substrate-Na(+) ion complex formation may be a mechanistic principle featuring transmembrane neurotransmitter-sodium symporter proteins.


Neurochemistry International | 2004

Cyclothiazide binding to functionally active AMPA receptor reveals genuine allosteric interaction with agonist binding sites

Ilona Kovács; Ágnes Simon; Éva Szárics; Peter Barabas; László Héja; Lajos Nyikos; Julianna Kardos

The agonist, [3H](-)[S]-1-(2-amino-2-carboxyethyl)-5-fluoro-pyrimidine-2,4-dione ([3H](S)F-Willardiine) binding to functional alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors of resealed plasma membrane vesicles and nerve endings freshly isolated from the rat cerebral cortex displayed two binding sites (K(D1)=33+/-7 nM, B(MAX1)=1.6+/-0.3 pmol/mg protein, K(D2)=720+/-250 nM and B(MAX2)=7.8+/-4.0 pmol/mg protein). The drug which impairs AMPA receptor desensitisation, 6-chloro-3,4-dihydro-3-(2-norbornene-5-yl)-2H-1,2,4-benzothiadiazine-7-sulphonamide-1,1-dioxide (cyclothiazide, CTZ) fully displaced the [3H](S)F-Willardiine binding at a concentration of 500 microM. In the presence of 100 microM CTZ (K(I(CTZ))=60+/-6 microM), both the antagonist [3H]-1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo(F)quinoxaline-7-sulfonamide ([3H]NBQX: K(D)=24+/-4 nM, B(MAX)=12.0+/-0.1 pmol/mg protein) and the high-affinity agonist binding showed similar affinity reduction ([3H](S)F-Willardiine: K(D)=140+/-19 nM, B(MAX)=2.9+/-0.5 pmol/mg protein; [3H]NBQX: K(D)=111+/-34 nM, B(MAX)=12+/-3 pmol/mg protein). To disclose structural correlates underlying genuine allosteric binding interactions, molecular mechanics calculations of CTZ-induced structural changes were performed with the use of PDB data on extracellular GluR2 binding domain dimeric crystals available by now. Hydrogen-bonding and root mean square (rms) values of amino acid residues recognising receptor agonists showed minor alterations in the agonist binding sites itself. Moreover, CTZ binding did not affect dimeric subunit structures significantly. These findings indicated that the structural changes featuring the non-desensitised state could possibly occur to a further site of the extracellular GluR2 binding domain. The increase of agonist efficacy on allosteric CTZ binding may be interpreted in terms of a mechanism involving AMPA receptor desensitisation sequential to activation.


Molecular Immunology | 2002

Modeling MHC class II molecules and their bound peptides as expressed at the cell surface.

Ágnes Simon; István Simon; Éva Rajnavölgyi

A detailed insight to the structure of a given major histocompatibility complex (MHC)-peptide complex can strongly support and also improve the analysis of the peptide binding capabilities of the MHC molecule and the characterization of the developing T cell response. The number of MHC class II-peptide crystal structures is limited, therefore constructing and analyzing computer models can serve as efficient complementary tools when someone deals with experimentally determined binding and/or functional data. Commercial programs are available for modeling protein and protein-protein complexes, in general. However, more accurate results can be obtained if the parameters are directly optimized to a given complex, especially in the case of special proteins as MHC class II, an integral membrane protein, whose functional parts behave like regular globular proteins. Here, we present the optimization of an approach used for modeling MHC class II molecules complexed with various peptides fitting into the binding groove and several ways to analyze them with the help of experimental data.


Bioorganic & Medicinal Chemistry Letters | 2008

Validation of high-affinity binding sites for succinic acid through distinguishable binding of gamma-hydroxybutyric acid receptor-specific NCS 382 antipodes

Tünde Molnár; Júlia Visy; Ágnes Simon; István Moldvai; Eszter Temesvári-Major; Gábor Dörnyei; Erzsébet Kútiné Fekete; Julianna Kardos

Gamma-hydroxybutyric acid (GHB) binding to multiple sites for the tricarboxylic acid cycle intermediate succinic acid (SUC) has been disclosed recently. In order to better characterize these targets, distinguishable binding of GHB receptor-specific NCS 382 antipodes to [(3)H]-SUC or [(3)H]-GHB labelled sites in rat brain synaptic membranes was explored. Eutomer binding parameters suggest identity of the high-affinity target for SUC with a synaptic GHB receptor subtype.


Thrombosis and Haemostasis | 2005

Coagulation factor XIII-A. A flow cytometric intracellular marker in the classification of acute myeloid leukemias.

János Kappelmayer; Ágnes Simon; Éva Katona; Attila Szanto; Laszlo Nagy; Attila Kiss; Csongor Kiss; László Muszbek

The association of coagulation factors with leukocytes have been demonstrated in several previous studies. This study was designed to study the sensitivity and specificity of factor XIII subunit A (FXIII-A) labelling in cultured myeloblastic and monoblastic cell lines and to investigate the intracytoplasmic expression of FXIII-A in de novo acute myeloid leukemia (AML) samples. Myeloblastic and a monoblastic cell lines were cultured and investigated for lineage specific maturation markers and FXIII-A expression. Furthermore, FXIII-A expression was investigated in 12 normal samples (7 bone marrow and 5 peripheral blood), 86 de novo AML samples and 6 chronic myelomonocytic leukemia (CMML) samples. In the monoblastic MonoMac6 cell line the appearance of FXIII-A preceded that of CD14 while it remained negative in the myeloblastic PLB-985 cell line throughout its maturation period. Among the AML samples the average frequency of FXIII-A positive cells in myeloblastic leukemia samples was below 10%, while in M4 and M5AML samples it was above 50% and was significantly higher than the generally used CD14 marker (p < 0.0001). In the AML M4 and M5 cases, FXIII-A proved sensitive for the identification of monoblasts. FXIII-A can be considered as a reliable intracytoplasmic marker for the monocytic and megakaryocytic series and its presence is highly predictive for mono- and megakaryocytic AML and for CMML.

Collaboration


Dive into the Ágnes Simon's collaboration.

Top Co-Authors

Avatar

Julianna Kardos

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

László Héja

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ákos Bencsura

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

István Simon

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Júlia Visy

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lajos Nyikos

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Palló

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Csaba Magyar

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gabriella Nyitrai

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge