Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ágnes Vehovszky is active.

Publication


Featured researches published by Ágnes Vehovszky.


Chemosphere | 2010

Vulnerability of biomarkers in the indigenous mollusk Anodonta cygnea to spontaneous pollution in a transition country

Halina I. Falfushynska; Lesya L. Gnatyshyna; Anna Farkas; Ágnes Vehovszky; János Györi; Oksana B. Stoliar

The aim of this study was to estimate the sensitivity of biomarkers of stress and exposure in the bivalve mollusk Anodonta cygnea to spontaneous anthropogenic activities typical for the Western Ukraine. Three sites were examined during spring, summer and autumn: an agricultural site (A); the cooling pond of nuclear power plant (N) and a forestry close to the municipal water inlet (F). Common temporal changes of a battery of biochemical markers in the gills and hemolymph and morphological characteristics were shown by discriminant functional analysis. Classification trees built on the basis of the screened biomarkers demonstrated persistent peculiarities at each site: genotoxicity (nuclear abnormalities) at site A and endocrine disruption (high levels of vitellogenin-like proteins (Vtg-LP) in hemolymph) at site F. Interim local effects were best characterized by metallothionein (MT) concentrations, lipid peroxidation (LPO), activities of glutathione S-transferase and lactate dehydrogenase, and the conditional index of the gills. In autumn, the mollusks from the three sites revealed the highest differences in pollution status: the activation of antioxidant defense and cholinesterase were typical for site A, highest levels of MT related to high levels of Cu and Cd in the water at site B, and a steep increase in the level of Vtg-LP and the decrease of lysosomal membrane stability were recorded at the site selected as reference (F). The biomarker alterations recorded at site F were later related to an emergency event at the municipal dump located nearby. Thus, our case study demonstrated the reliability of using biomarkers of exposure to assess both long-term and accidental environmental pollution loads.


Brain Research | 2000

Octopamine is the synaptic transmitter between identified neurons in the buccal feeding network of the pond snail Lymnaea stagnalis

Ágnes Vehovszky; László Hiripi; Christopher J. H. Elliott

We report the pharmacological properties of synaptic connections from the three octopamine-containing OC interneurons to identified buccal feeding neurons in the pond snail, Lymnaea stagnalis. Intracellular stimulation of an OC interneuron evokes inhibitory postsynaptic potentials in the B3 motoneurons and N2 (d) interneurons, while the synapse between OC and N3 (phasic) interneurons has two components: an initial electrical excitation followed by chemical inhibition. All synaptic responses persist in a saline with elevated calcium and magnesium suggesting that the connections are monosynaptic. Local perfusion of 10(-4) M octopamine produces the same inhibitory membrane responses from these buccal neurons as OC stimulation. These responses also persist in high Mg(2+)/Ca(2+) saline indicating direct membrane effects. The similarities in reversal potentials for the synaptic hyperpolarization evoked on B3 neurons after OC stimulation (-89.0 mV, S.E.M.=14.1, n=10) and the octopamine response of the B3 neurons (-84.7 mV, S.E.M.=6.6, n=6) indicate that increased K(+)-conductance underlies both responses. Bath application of the octopaminergic drugs phentolamine (10(-6) M), epinastine (10(-6) M) or DCDM (10(-4) M) blocks the inhibitory synapse onto B3 or N2 neurons and the chemical component of the N3 response. They also block the octopamine-evoked inhibition of B3, N2 and N3 neurons. NC-7 (2x10(-5) M) has a hyperpolarizing agonist effect (like octopamine) on these neurons and also blocks their chemical synaptic input from the OC interneurons. These results provide pharmacological evidence that the neurotransmitter between the octopamine-immunopositive OC interneurons and its followers is octopamine. This is the first example of identified octopaminergic synaptic connections within the snail CNS.


Brain Research | 2000

Polycyclic neuromodulation of the feeding rhythm of the pond snail Lymnaea stagnalis by the intrinsic octopaminergic interneuron, OC

Christopher J. H. Elliott; Ágnes Vehovszky

We have examined the role of the octopamine-containing buccal OC interneuron in the fictive feeding rhythm generated by depolarizing a modulatory interneuron, SO, in the isolated central nervous system (CNS) of Lymnaea stagnalis. Before stimulating the SO, the initial fictive feeding rate was 2.0+/-0.37 bites/min (mean+/-S.E.). When the SO was stimulated, the fictive feeding rate more than doubled, increasing by 5.4+/-2.6 bites/min. Prestimulation of OC facilitates the ability of the modulatory neuron SO to drive fictive feeding 4 s later. Following OC stimulation, the increase in SO-driven feeding rate was 10.8+/-1.6 bites/min, significantly more than when only the SO was stimulated (P<0.02, paired t-test on five preparations). OC activity is not required during the SO stimulation for this enhancement. The maximum of the SO driven rhythm occurs between 6 and 12 s after the end of the OC stimulation at 20 bites/min. This is the maximum feeding rate of intact Lymnaea in sucrose. Facilitation is mimicked by bath applied octopamine at 5 microM. Facilitation is specific to OC interneurons, as the same prestimulation of the electrically coupled neuron N3P (central pattern generator) interneurons does not affect the feeding rhythm. The OC interneuron acts as a long term, polycyclic modulator, which peaks several feeding cycles after the OC activity.


Aquatic Toxicology | 2015

Neonicotinoid insecticides inhibit cholinergic neurotransmission in a molluscan (Lymnaea stagnalis) nervous system

Ágnes Vehovszky; Anna Farkas; András Ács; Oksana B. Stoliar; András Székács; Mária Mörtl; János Győri

Neonicotinoids are highly potent and selective systemic insecticides, but their widespread use also has a growing impact on non-target animals and contaminates the environment, including surface waters. We tested the neonicotinoid insecticides commercially available in Hungary (acetamiprid, Mospilan; imidacloprid, Kohinor; thiamethoxam, Actara; clothianidin, Apacs; thiacloprid, Calypso) on cholinergic synapses that exist between the VD4 and RPeD1 neurons in the central nervous system of the pond snail Lymnaea stagnalis. In the concentration range used (0.01-1 mg/ml), neither chemical acted as an acetylcholine (ACh) agonist; instead, both displayed antagonist activity, inhibiting the cholinergic excitatory components of the VD4-RPeD1 connection. Thiacloprid (0.01 mg/ml) blocked almost 90% of excitatory postsynaptic potentials (EPSPs), while the less effective thiamethoxam (0.1 mg/ml) reduced the synaptic responses by about 15%. The ACh-evoked membrane responses of the RPeD1 neuron were similarly inhibited by the neonicotinoids, confirming that the same ACh receptor (AChR) target was involved. We conclude that neonicotinoids act on nicotinergic acetylcholine receptors (nAChRs) in the snail CNS. This has been established previously in the insect CNS; however, our data indicate differences in the background mechanism or the nAChR binding site in the snail. Here, we provide the first results concerning neonicotinoid-related toxic effects on the neuronal connections in the molluscan nervous system. Aquatic animals, including molluscs, are at direct risk while facing contaminated surface waters, and snails may provide a suitable model for further studies of the behavioral/neuronal consequences of intoxication by neonicotinoids.


BMC Neuroscience | 2005

Octopamine increases the excitability of neurons in the snail feeding system by modulation of inward sodium current but not outward potassium currents

Ágnes Vehovszky; Henriette Szabó; Christopher J. H. Elliott

BackgroundAlthough octopamine has long been known to have major roles as both transmitter and modulator in arthropods, it has only recently been shown to be functionally important in molluscs, playing a role as a neurotransmitter in the feeding network of the snail Lymnaea stagnalis. The synaptic potentials cannot explain all the effects of octopamine-containing neurons on the feeding network, and here we test the hypothesis that octopamine is also a neuromodulator.ResultsThe excitability of the B1 and B4 motoneurons in the buccal ganglia to depolarising current clamp pulses is significantly (P << 0.05) increased by (10 μM) octopamine, whereas the B2 motoneuron becomes significantly less excitable. The ionic currents evoked by voltage steps were recorded using 2-electrode voltage clamp. The outward current of B1, B2 and B4 motoneurons had two components, a transient IA current and a sustained IK delayed-rectifier current, but neither was modulated by octopamine in any of these three buccal neurons. The fast inward current was eliminated in sodium – free saline and so is likely to be carried by sodium ions. 10 μM octopamine enhanced this current by 33 and 45% in the B1 and B4 motoneurons respectively (P << 0.05), but a small reduction was seen in the B2 neuron. A Hodgkin-Huxley style simulation of the B1 motoneuron confirms that a 33% increase in the fast inward current by octopamine increases the excitability markedly.ConclusionWe conclude that octopamine is also a neuromodulator in snails, changing the excitability of the buccal neurons. This is supported by the close relationship from the voltage clamp data, through the quantitative simulation, to the action potential threshold, changing the properties of neurons in a rhythmic network. The increase in inward sodium current provides an explanation for the polycyclic modulation of the feeding system by the octopamine-containing interneurons, making feeding easier to initiate and making the feeding bursts more intense.


Invertebrate Neuroscience | 1995

The hybrid modulatory/pattern generating N1L interneuron in the buccal feeding system of Lymnaea is cholinergic.

Ágnes Vehovszky; Christopher J. H. Elliott

This study examines neurotransmission between identified buccal interneurons in the feeding system of the snailLymnaea stagnalis. We compare the pharmacology of the individual synaptic connections from a hybrid modulatory/pattern generating interneuron (N1L) to a pattern generating interneuron (N1M) with that from a modulatory interneuron (SO) to the same follower cell (N1M).The pharmacological properties of the N1L to N1M and the SO to N1M connections closely resemble each other. Both interneurons produce fast cholinergic EPSPs as judged by the blocking effects of cholinergic antagonists hexamethonium,d-tubocurarine and the cholinergic neurotoxin AF-64A. A slower, more complex but non-cholinergic component of the synaptic response is also present after stimulating either the presynaptic N1L or SO interneurons. This second component of the postsynaptic response is not dopaminergic, on the basis of its persistence in the presence of dopaminergic antagonists ergometrine and fluphenazine and the dopaminergic neurotoxin MPP+.We conclude that, although there has been an evolutionary divergence in function, the modulatory SO and the hybrid modulatory/pattern generating N1L are pharmacologically similar. Neither of them contributes directly to dopaminergic modulation of the feeding activity. These neurons also resemble the N1M protraction phase pattern generating neurons which are cholinergic (Elliott and Kemenes, 1992).


Environmental Toxicology | 2015

Pharmacological studies confirm neurotoxic metabolite(s) produced by the bloom‐forming Cylindrospermopsis raciborskii in Hungary

Ágnes Vehovszky; Attila Kovács; Anna Farkas; János Győri; Henriette Szabó; Gábor Vasas

A rapid cyanobacterial bloom of Cylindrospermopsis raciborskii (3.2 × 104 filaments/mL) was detected early November, 2012, in the Fancsika pond (East Hungary). The strong discoloration of water was accompanied by a substantial fish mortality (even dead cats were seen on the site), raising the possibility of some toxic metabolites in the water produced by the bloom‐forming cyanobacteria (C. raciborskii). The potential neuronal targets of the toxic substances in the bloom sample were studied on identified neurons (RPas) in the central nervous system of Helix pomatia. The effects of the crude aqueous extracts of the Fancsika bloom sample (FBS) and the laboratory isolate of C. raciborskii from the pond (FLI) were compared with reference samples: C. raciborskii ACT 9505 (isolated in 1995 from Lake Balaton, Hungary), the cylindrospermopsin producer AQS, and the neurotoxin (anatoxin‐a, homoanatoxin‐a) producer Oscillatoria sp. (PCC 6506) strains. Electrophysiological tests showed that both FBS and FLI samples as well the ACT 9505 extracts modulate the acetylcholine receptors (AChRs) of the neurons, evoking ACh agonist effects, then inhibiting the ACh‐evoked neuronal responses. Dose–response data suggested about the same range of toxicity of FBS and FLI samples (EC50 = 0.397 mg/mL and 0.917 mg/mL, respectively) and ACT 9505 extracts (EC50 = 0.734 mg/mL). The extract of the neurotoxin‐producing PCC 6506 strain, however, proved to be the strongest inhibitor of the ACh responses on the same neurons (EC50 = 0.073 mg/mL). The presented results demonstrated an anatoxin‐a‐like cholinergic inhibitory effects of cyanobacterial extracts (both the environmental FBS sample, and the laboratory isolate, FLI) by some (yet unidentified) toxic components in the matrix of secondary metabolites. Previous pharmacological studies of cyanobacterial samples collected in other locations (Balaton, West Hungary) resulted in similar conclusions; therefore, we cannot exclude that this chemotype of C. raciborskii which produce anatoxin‐a like neuroactive substances is more widely distributed in this region.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2004

Octopamine-containing (OC) interneurons enhance central pattern generator activity in sucrose-induced feeding in the snail Lymnaea

Ágnes Vehovszky; Henriette Szabó; Christopher J. H. Elliott

In the pond snail Lymnaea stagnalis octopamine-containing (OC) interneurons trigger and reconfigure the feeding pattern in isolated CNS by excitation of the central pattern generator. In semi-intact (lip–mouth—CNS) preparations, this central pattern generator is activated by chemosensory inputs. We now test if sucrose application to the lips activates the OC neurons independently of the rest of the feeding central pattern generator, or if the OC interneuron is activated by inputs from the feeding network. In 66% of experiments, sucrose stimulated feeding rhythms and OC interneurons received regular synaptic inputs. Only rarely (14%) did the OC interneuron fire action potentials, proving that firing of OC interneurons is not necessary for the sucrose-induced feeding. Prestimulation of OC neurons increased the intensity and duration of the feeding rhythm evoked by subsequent sucrose presentations. One micromolar octopamine in the CNS bath mimicked the effect of OC interneuron stimulation, enhancing the feeding response when sucrose is applied to the lips. We conclude that the modulatory OC neurons are not independently excited by chemosensory inputs to the lips, but rather from the buccal central pattern generator network. However, when OC neurons fire, they release modulatory octopamine, which provides a positive feedback to the network to enhance the sucrose-activated central pattern generator rhythm.


Aquatic Toxicology | 2018

Neonicotinoid insecticides are potential substrates of the multixenobiotic resistance (MXR) mechanism in the non-target invertebrate, Dreissena sp

Ágnes Vehovszky; Anna Farkas; Vivien Csikós; András Székács; Mária Mörtl; János Győri

Mussels are among the most frequently used invertebrate animals in aquatic toxicology to detect toxic exposure in the environment. The presence and activity of a cellular defence system, the multixenobiotic resistance (MXR) mechanism, was also established in these organisms. In isolated gill tissues of dreissenid mussels (D. bugensis) the MXR activity was assayed after treatment by commercially available insecticides (formulated products) which contain neonicotinoids as their active ingredients: Actara (thiamethoxam), Apacs (clothianidin), Calypso (thiacloprid) and Kohinor (imidacloprid), respectively. While applying the accumulation assay method, 0.5 μM rhodamine B was used as model substrate and 20 μM verapamil as model inhibitor of the MXR mechanism. In acute (in vitro) experiments when isolated gills were co-incubated in graded concentrations of insecticides and rhodamine B simultaneously, Calypso and Kohinor treatment resulted increasing rhodamine accumulation. Chemical analysis of gills in vitro incubated in insecticides demonstrated higher tissue concentrations of thiamethoxam, clothianidin and thiacloprid in the presence of verapamil suggesting that the active ingredients of Actara, Apacs and Calypso are potential substrates of the MXR mediated cellular efflux. In contrast, verapamil did significantly alter the accumulated imidacloprid concentrations in gills, suggesting that the active component of Kohinor is not transported by the MXR mechanism. Chronic (in vivo) exposures of the intact animals in lower, 1, 10 mg/L concentration of neonicotinoid products, resulted in a decreased level of both rhodamine accumulation and verapamil inhibition by the 12th-14th days of treatment. These results suggest an enhancement of MXR activity (chemostimulation), building up gradually in the animals exposed to Actara, Apacs and Kohinor, respectively. Neonicotinoid-type insecticides are generally considered as selective neurotoxins for insects, targeting the nicotinic type acetylcholine receptors (nAChRs) in their central nervous system. Our present results provide the first evidences that neonicotinoid insecticides are also able to alter the transmembrane transport mechanisms related to the MXR system.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2009

Isolated strains of Cylindrospermopsis raciborskii from Lake Balaton (Hungary) produce anatoxin-a like neurotoxins

Ágnes Vehovszky; András Ács; Attila Kovács; Henriette Szabó; János Györi; Anna Farkas

Collaboration


Dive into the Ágnes Vehovszky's collaboration.

Top Co-Authors

Avatar

Anna Farkas

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

János Győri

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henriette Szabó

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Attila Kovács

Institute for Transuranium Elements

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

András Székács

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

János Györi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

L. Hernádi

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge