Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agnese Di Rocco is active.

Publication


Featured researches published by Agnese Di Rocco.


Molecular Cancer Therapeutics | 2009

MEK/ERK inhibitor U0126 affects in vitro and in vivo growth of embryonal rhabdomyosarcoma

Francesco Marampon; Gianluca Bossi; Carmela Ciccarelli; Agnese Di Rocco; Ada Sacchi; Richard G. Pestell; Bianca M. Zani

We reported previously that the disruption of c-Myc through mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibition blocks the expression of the transformed phenotype in the embryonal rhabdomyosarcoma (ERMS) cell line (RD), thereby inducing myogenic differentiation in vitro. In this article, we investigate whether MEK/ERK inhibition, by the MEK/ERK inhibitor U0126, affects c-Myc protein level and growth of RMS tumor in an in vivo xenograft model. U0126 significantly reduced RMS tumor growth in RD cell line-xenotransplanted mice. Immunobiochemical and immunohistochemical analysis showed (a) phospho-active ERK levels were reduced by U0126 therapy and unaltered in normal tissues, (b) phospho-Myc and c-Myc was reduced commensurate with phospho-ERK inhibition, and (c) reduction in Ki-67 and endothelial (CD31) marker expression. These results indicate that MEK/ERK inhibition affects growth and angiogenic signals in tumor. The RD-M1 cultured xenograft tumor-derived cell line and the ERMS cell line TE671 responded to U0126 by arresting growth, down-regulating c-Myc, and initiating myogenesis. All these results suggest a tight correlation of MEK/ERK inhibition with c-Myc down-regulation and arrest of tumor growth. Thus, MEK inhibitors may be investigated for a signal transduction-based targeting of the c-Myc as a therapeutic strategy in ERMS. [Mol Cancer Ther 2009;8(3):543–51]


Molecular Cancer Therapeutics | 2011

MEK/ERK Inhibitor U0126 Increases the Radiosensitivity of Rhabdomyosarcoma Cells In vitro and In vivo by Downregulating Growth and DNA Repair Signals

Francesco Marampon; Giovanni Luca Gravina; Agnese Di Rocco; Pierluigi Bonfili; Mario Di Staso; Caterina Fardella; Lorella Polidoro; Carmela Ciccarelli; Claudio Festuccia; Vladimir M. Popov; Richard G. Pestell; Vincenzo Tombolini; Bianca M. Zani

Multimodal treatment has improved the outcome of many solid tumors, and in some cases the use of radiosensitizers has significantly contributed to this gain. Activation of the extracellular signaling kinase pathway (MEK/ERK) generally results in stimulation of cell growth and confers a survival advantage playing the major role in human cancer. The potential involvement of this pathway in cellular radiosensitivity remains unclear. We previously reported that the disruption of c-Myc through MEK/ERK inhibition blocks the expression of the transformed phenotype; affects in vitro and in vivo growth and angiogenic signaling; and induces myogenic differentiation in the embryonal rhabdomyosarcoma (ERMS) cell lines (RD). This study was designed to examine whether the ERK pathway affects intrinsic radiosensitivity of rhabdomyosarcoma cancer cells. Exponentially growing human ERMS, RD, xenograft-derived RD-M1, and TE671 cell lines were used. The specific MEK/ERK inhibitor, U0126, reduced the clonogenic potential of the three cell lines, and was affected by radiation. U0126 inhibited phospho-active ERK1/2 and reduced DNA protein kinase catalytic subunit (DNA-PKcs) suggesting that ERKs and DNA-PKcs cooperate in radioprotection of rhabdomyosarcoma cells. The TE671 cell line xenotransplanted in mice showed a reduction in tumor mass and increase in the time of tumor progression with U0126 treatment associated with reduced DNA-PKcs, an effect enhanced by radiotherapy. Thus, our results show that MEK/ERK inhibition enhances radiosensitivity of rhabdomyosarcoma cells suggesting a rational approach in combination with radiotherapy. Mol Cancer Ther; 10(1); 159–68. ©2011 AACR.


Arthritis & Rheumatism | 2015

Articular cartilage endurance and resistance to osteoarthritic changes require transcription factor Erg.

Yoichi Ohta; Takahiro Okabe; Colleen Larmour; Agnese Di Rocco; Marijke Maijenburg; Amanda Phillips; Nancy A. Speck; Shigeyuki Wakitani; Takashi Nakamura; Yoshihiko Yamada; Motomi Enomoto-Iwamoto; Maurizio Pacifici; Masahiro Iwamoto

To determine whether and how the transcription factor Erg participates in the genesis, establishment, and maintenance of articular cartilage.


Oncotarget | 2017

Hormone-induced DNA damage response and repair mediated by cyclin D1 in breast and prostate cancer

Gabriele Di Sante; Agnese Di Rocco; Claudia Pupo; Mathew C. Casimiro; Richard G. Pestell

Cell cycle control proteins govern events that leads to the production of two identical daughter cells. Distinct sequential temporal phases, Gap 1 (G1), Gap 0 (G0), Synthesis (S), Gap 2 (G2) and Mitosis (M) are negotiated through a series of check points during which the favorability of the local cellular environment is assessed, prior to replicating DNA [1]. Cyclin D1 has been characterized as a key regulatory subunit of the holoenzyme that promotes the G1/S-phase transition through phosphorylating the pRB protein. Cyclin D1 overexpression is considered a driving force in several types of cancers and cdk inhibitors are being used effectively in the clinic for treatment of ERα+ breast cancer [1, 2]. Genomic DNA is assaulted by damaging ionizing radiation, chemical carcinogens, and reactive oxygen species (ROS) which are generated by cellular metabolism. Furthermore, specific hormones including estrogens [3, 4] and androgens [5] govern pathways that damage DNA. Defects in the DNA Damage Response (DDR) pathway can lead to genomic instability and cancer. Evidence is emerging that cyclin D1 bind proteins involved in DNA repair including BRCA1 [6], RAD51 [7], BRCA2 [8] and is involved in the DNA damage and DNA repair processes [7, 8]. Because the repair of damaged DNA appears to be an important an unexpected role for cyclin D1, and inhibitors of cyclin D1-dependent kinase activity are being used in the clinic, the latest findings on the role of cyclin D1 in mediating the DDR including the DDR induced by the hormones estrogen [9] and androgen [10, 11] is reviewed.Cell cycle control proteins govern events that leads to the production of two identical daughter cells. Distinct sequential temporal phases, Gap 1 (G1), Gap 0 (G0), Synthesis (S), Gap 2 (G2) and Mitosis (M) are negotiated through a series of check points during which the favorability of the local cellular environment is assessed, prior to replicating DNA [1]. Cyclin D1 has been characterized as a key regulatory subunit of the holoenzyme that promotes the G1/S-phase transition through phosphorylating the pRB protein. Cyclin D1 overexpression is considered a driving force in several types of cancers and cdk inhibitors are being used effectively in the clinic for treatment of ERα+ breast cancer [1, 2]. Genomic DNA is assaulted by damaging ionizing radiation, chemical carcinogens, and reactive oxygen species (ROS) which are generated by cellular metabolism. Furthermore, specific hormones including estrogens [3, 4] and androgens [5] govern pathways that damage DNA. Defects in the DNA Damage Response (DDR) pathway can lead to genomic instability and cancer. Evidence is emerging that cyclin D1 bind proteins involved in DNA repair including BRCA1 [6], RAD51 [7], BRCA2 [8] and is involved in the DNA damage and DNA repair processes [7, 8]. Because the repair of damaged DNA appears to be an important and unexpected role for cyclin D1, and inhibitors of cyclin D1-dependent kinase activity are being used in the clinic, the latest findings on the role of cyclin D1 in mediating the DDR including the DDR induced by the hormones estrogen [9] and androgen [10, 11] is reviewed.


Molecular Endocrinology | 2015

Sirt1-deficient mice have hypogonadotropic hypogonadism due to defective GnRH neuronal migration.

Gabriele Di Sante; Liping Wang; Chenguang Wang; Xuanmiao Jiao; Mathew C. Casimiro; Ke Chen; Timothy G. Pestell; Ismail Yaman; Agnese Di Rocco; Xin Sun; Yoshiyuki Horio; Michael J. Powell; Xiaohong He; Michael W. McBurney; Richard G. Pestell

Hypogonadatropic hypogonadism (HH) can be acquired through energy restriction or may be inherited as congenital hypogonadotropic hypogonadism and its anosmia-associated form, Kallmanns syndrome. Congenital hypogonadotropic hypogonadism is associated with mutations in a group of genes that impact fibroblast growth factor 8 (FGF8) function. The Sirt1 gene encodes a nicotinamide adenine dinucleotide-dependent histone deacetylase that links intracellular metabolic stress to gene expression. Herein Sirt1(-/-) mice are shown to have HH due to failed GnRH neuronal migration. Sirtuin-1 (Sirt1) catalytic function induces GnRH neuronal migration via binding and deacetylating cortactin. Sirt1 colocalized with cortactin in GnRH neurons in vitro. Sirt1 colocalization with cortactin was regulated in an FGF8/fibroblast growth factor receptor-1 dependent manner. The profound effect of Sirt1 on the hormonal status of Sirt1(-/-) mice, mediated via defective GnRH neuronal migration, links energy metabolism directly to the hypogonadal state. Sirt1-cortactin may serve as the distal transducer of neuronal migration mediated by the FGF8 synexpression group of genes that govern HH.


Cancer Research | 2017

Cyclin D1 restrains oncogene-induced autophagy by regulating the AMPK–LKB1 signaling axis

Mathew C. Casimiro; Gabriele Di Sante; Agnese Di Rocco; Emanuele Loro; Claudia Pupo; Timothy G. Pestell; Sara Bisetto; Marco A. Velasco-Velázquez; Xuanmao Jiao; Zhiping Li; Christine M. Kusminski; Erin L. Seifert; Chenguang Wang; Daniel Ly; Bin Zheng; Che Hung Shen; Philipp E. Scherer; Richard G. Pestell

Autophagy activated after DNA damage or other stresses mitigates cellular damage by removing damaged proteins, lipids, and organelles. Activation of the master metabolic kinase AMPK enhances autophagy. Here we report that cyclin D1 restrains autophagy by modulating the activation of AMPK. In cell models of human breast cancer or in a cyclin D1-deficient model, we observed a cyclin D1-mediated reduction in AMPK activation. Mechanistic investigations showed that cyclin D1 inhibited mitochondrial function, promoted glycolysis, and reduced activation of AMPK (pT172), possibly through a mechanism that involves cyclin D1-Cdk4/Cdk6 phosphorylation of LKB1. Our findings suggest how AMPK activation by cyclin D1 may couple cell proliferation to energy homeostasis. Cancer Res; 77(13); 3391-405. ©2017 AACR.


American Journal of Pathology | 2015

Selective Retinoic Acid Receptor γ Agonists Promote Repair of Injured Skeletal Muscle in Mouse

Agnese Di Rocco; Kenta Uchibe; Colleen Larmour; Rebecca Berger; Min Liu; Elisabeth R. Barton; Masahiro Iwamoto

Retinoic acid signaling regulates several biological events, including myogenesis. We previously found that retinoic acid receptor γ (RARγ) agonist blocks heterotopic ossification, a pathological bone formation that mostly occurs in the skeletal muscle. Interestingly, RARγ agonist also weakened deterioration of muscle architecture adjacent to the heterotopic ossification lesion, suggesting that RARγ agonist may oppose skeletal muscle damage. To test this hypothesis, we generated a critical defect in the tibialis anterior muscle of 7-week-old mice with a cautery, treated them with RARγ agonist or vehicle corn oil, and examined the effects of RARγ agonist on muscle repair. The muscle defects were partially repaired with newly regenerating muscle cells, but also filled with adipose and fibrous scar tissue in both RARγ-treated and control groups. The fibrous or adipose area was smaller in RARγ agonist-treated mice than in the control. In addition, muscle repair was remarkably delayed in RARγ-null mice in both critical defect and cardiotoxin injury models. Furthermore, we found a rapid increase in retinoid signaling in lacerated muscle, as monitored by retinoid signaling reporter mice. Together, our results indicate that endogenous RARγ signaling is involved in muscle repair and that selective RARγ agonists may be beneficial to promote repair in various types of muscle injuries.


Oncotarget | 2017

Stromal cyclin D1 promotes heterotypic immune signaling and breast cancer growth

Timothy G. Pestell; Xuanmao Jiao; Mukesh Kumar; Amy R. Peck; Marco Prisco; Shengqiong Deng; Zhiping Li; Adam Ertel; Matthew C. Casimiro; Xiaoming Ju; Agnese Di Rocco; Gabriele Di Sante; Sanjay Katiyar; Alison Shupp; Michael P. Lisanti; Pooja Jain; Kongming Wu; Hallgeir Rui; Douglas Craig Hooper; Zuoren Yu; Aaron R. Goldman; David W. Speicher; Lisa Laury-Kleintop; Richard G. Pestell

The cyclin D1 gene encodes the regulatory subunit of a holoenzyme that drives cell autonomous cell cycle progression and proliferation. Herein we show cyclin D1 abundance is increased >30-fold in the stromal fibroblasts of patients with invasive breast cancer, associated with poor outcome. Cyclin D1 transformed hTERT human fibroblast to a cancer-associated fibroblast phenotype. Stromal fibroblast expression of cyclin D1 (cyclin D1Stroma) in vivo, enhanced breast epithelial cancer tumor growth, restrained apoptosis, and increased autophagy. Cyclin D1Stroma had profound effects on the breast tumor microenvironment increasing the recruitment of F4/80+ and CD11b+ macrophages and increasing angiogenesis. Cyclin D1Stroma induced secretion of factors that promoted expansion of stem cells (breast stem-like cells, embryonic stem cells and bone marrow derived stem cells). Cyclin D1Stroma resulted in increased secretion of proinflammatory cytokines (CCL2, CCL7, CCL11, CXCL1, CXCL5, CXCL9, CXCL12), CSF (CSF1, GM-CSF1) and osteopontin (OPN) (30-fold). OPN was induced by cyclin D1 in fibroblasts, breast epithelial cells and in the murine transgenic mammary gland and OPN was sufficient to induce stem cell expansion. These results demonstrate that cyclin D1Stroma drives tumor microenvironment heterocellular signaling, promoting several key hallmarks of cancer.


Cancer Research | 2016

v-Src Oncogene Induces Trop2 Proteolytic Activation via Cyclin D1.

Xiaoming Ju; Xuanmao Jiao; Adam Ertel; Mathew C. Casimiro; Gabriele Di Sante; Shengqiong Deng; Zhiping Li; Agnese Di Rocco; Tingting Zhan; Adam Hawkins; Tanya Stoyanova; Sebastiano Andò; Alessandro Fatatis; Michael P. Lisanti; Leonard G. Gomella; Lucia R. Languino; Richard G. Pestell

Proteomic analysis of castration-resistant prostate cancer demonstrated the enrichment of Src tyrosine kinase activity in approximately 90% of patients. Src is known to induce cyclin D1, and a cyclin D1-regulated gene expression module predicts poor outcome in human prostate cancer. The tumor-associated calcium signal transducer 2 (TACSTD2/Trop2/M1S1) is enriched in the prostate, promoting prostate stem cell self-renewal upon proteolytic activation via a γ-secretase cleavage complex (PS1, PS2) and TACE (ADAM17), which releases the Trop2 intracellular domain (Trop2 ICD). Herein, v-Src transformation of primary murine prostate epithelial cells increased the proportion of prostate cancer stem cells as characterized by gene expression, epitope characteristics, and prostatosphere formation. Cyclin D1 was induced by v-Src, and Src kinase induction of Trop2 ICD nuclear accumulation required cyclin D1. Cyclin D1 induced abundance of the Trop2 proteolytic cleavage activation components (PS2, TACE) and restrained expression of the inhibitory component of the Trop2 proteolytic complex (Numb). Patients with prostate cancer with increased nuclear Trop2 ICD and cyclin D1, and reduced Numb, had reduced recurrence-free survival probability (HR = 4.35). Cyclin D1, therefore, serves as a transducer of v-Src-mediated induction of Trop2 ICD by enhancing abundance of the Trop2 proteolytic activation complex. Cancer Res; 76(22); 6723-34. ©2016 AACR.


Journal of Cancer Research and Clinical Oncology | 2018

Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo

Carmela Ciccarelli; Agnese Di Rocco; Giovanni Luca Gravina; Annunziata Mauro; Claudio Festuccia; Andrea Del Fattore; Paolo Berardinelli; Francesca De Felice; Daniela Musio; Marina Bouché; Vincenzo Tombolini; Bianca M. Zani; F. Marampon

PurposeProstate cancer (PCa) cell radioresistance causes the failure of radiation therapy (RT) in localized or locally advanced disease. The aberrant accumulation of c-Myc oncoprotein, known to promote PCa onset and progression, may be due to the control of gene transcription and/or MEK/ERK-regulated protein stabilization. Here, we investigated the role of MEK/ERK signaling in PCa.MethodsLnCAP, 22Rv1, DU145, and PC3 PCa cell lines were used in in vitro and in vivo experiments. U0126, trametinib MEK/ERK inhibitors, and c-Myc shRNAs were used. Radiation was delivered using an x-6 MV photon linear accelerator. U0126 in vivo activity alone or in combination with irradiation was determined in murine xenografts.ResultsInhibition of MEK/ERK signaling down-regulated c-Myc protein in PCa cell lines to varying extents by affecting expression of RNA and protein, which in turn determined radiosensitization in in vitro and in vivo xenograft models of PCa cells. The crucial role played by c-Myc in the MEK/ERK pathways was demonstrated in 22Rv1 cells by the silencing of c-Myc by means of short hairpin mRNA, which yielded effects resembling the targeting of MEK/ERK signaling. The clinically approved compound trametinib used in vitro yielded the same effects as U0126 on growth and C-Myc expression. Notably, U0126 and trametinib induced a drastic down-regulation of BMX, which is known to prevent apoptosis in cancer cells.ConclusionsThe results of our study suggest that signal transduction-based therapy can, by disrupting the MEK/ERK/c-Myc axis, reduce human PCa radioresistance caused by increased c-Myc expression in vivo and in vitro and restores apoptosis signals.

Collaboration


Dive into the Agnese Di Rocco's collaboration.

Top Co-Authors

Avatar

Richard G. Pestell

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Gabriele Di Sante

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Mathew C. Casimiro

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Colleen Larmour

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Masahiro Iwamoto

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Timothy G. Pestell

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Xuanmao Jiao

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Zhiping Li

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge