Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agnese Po is active.

Publication


Featured researches published by Agnese Po.


The EMBO Journal | 2008

Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells

Elisabetta Ferretti; Enrico De Smaele; Evelina Miele; Pietro Laneve; Agnese Po; Marianna Pelloni; Arianna Paganelli; Lucia Di Marcotullio; Elisa Caffarelli; Isabella Screpanti; Irene Bozzoni; Alberto Gulino

MicroRNAs (miRNA) are crucial post‐transcriptional regulators of gene expression and control cell differentiation and proliferation. However, little is known about their targeting of specific developmental pathways. Hedgehog (Hh) signalling controls cerebellar granule cell progenitor development and a subversion of this pathway leads to neoplastic transformation into medulloblastoma (MB). Using a miRNA high‐throughput profile screening, we identify here a downregulated miRNA signature in human MBs with high Hh signalling. Specifically, we identify miR‐125b and miR‐326 as suppressors of the pathway activator Smoothened together with miR‐324‐5p, which also targets the downstream transcription factor Gli1. Downregulation of these miRNAs allows high levels of Hh‐dependent gene expression leading to tumour cell proliferation. Interestingly, the downregulation of miR‐324‐5p is genetically determined by MB‐associated deletion of chromosome 17p. We also report that whereas miRNA expression is downregulated in cerebellar neuronal progenitors, it increases alongside differentiation, thereby allowing cell maturation and growth inhibition. These findings identify a novel regulatory circuitry of the Hh signalling and suggest that misregulation of specific miRNAs, leading to its aberrant activation, sustain cancer development.


International Journal of Cancer | 2009

MicroRNA profiling in human medulloblastoma

Elisabetta Ferretti; Enrico De Smaele; Agnese Po; Lucia Di Marcotullio; Emanuele Tosi; Maria Salomè B. Espinola; Concezio Di Rocco; Riccardo Riccardi; Felice Giangaspero; Alessio Farcomeni; Italo Nofroni; Pietro Laneve; Ubaldo Gioia; Elisa Caffarelli; Irene Bozzoni; Isabella Screpanti; Alberto Gulino

Medulloblastoma is an aggressive brain malignancy with high incidence in childhood. Current treatment approaches have limited efficacy and severe side effects. Therefore, new risk‐adapted therapeutic strategies based on molecular classification are required. MicroRNA expression analysis has emerged as a powerful tool to identify candidate molecules playing an important role in a large number of malignancies. However, no data are yet available on human primary medulloblastomas. A high throughput microRNA expression profiles was performed in human primary medulloblastoma specimens to investigate microRNA involvement in medulloblastoma carcinogenesis. We identified specific microRNA expression patterns which distinguish medulloblastoma differing in histotypes (anaplastic, classic and desmoplastic), in molecular features (ErbB2 or c‐Myc overexpressing tumors) and in disease‐risk stratification. MicroRNAs expression profile clearly differentiates medulloblastoma from either adult or fetal normal cerebellar tissues. Only a few microRNAs displayed upregulated expression, while most of them were downregulated in tumor samples, suggesting a tumor growth‐inhibitory function. This property has been addressed for miR‐9 and miR‐125a, whose rescued expression promoted medulloblastoma cell growth arrest and apoptosis while targeting the proproliferative truncated TrkC isoform. In conclusion, misregulated microRNA expression profiles characterize human medulloblastomas, and may provide potential targets for novel therapeutic strategies.


Nature Cell Biology | 2006

Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination

Lucia Di Marcotullio; Elisabetta Ferretti; Azzura Greco; Enrico De Smaele; Agnese Po; Maria Anna Sico; Maurizio Alimandi; Giuseppe Giannini; Marella Maroder; Isabella Screpanti; Alberto Gulino

The developmental protein Numb is a major determinant of binary cell fates. It is also required for the differentiation of cerebellar granule cell progenitors (GCPs) at a stage of development responsive to the morphogenic glycoprotein Hedehog. Hedgehog signalling is crucial for the physiological maintenance and self-renewal of neural stem cells and its deregulation is responsible for their progression towards tumorigenesis. The mechanisms that inhibit this pathway during the differentiation stage are poorly understood. Here, we identify Numb as a Hedgehog-pathway inhibitor that is downregulated in early GCPs and GCP-derived cancer cells. We demonstrate that the Hedgehog transcription factor Gli1 is targeted by Numb for Itch-dependent ubiquitination, which suppresses Hedgehog signals, thus arresting growth and promoting cell differentiation. This novel Numb-dependent regulatory loop may limit the extent and duration of Hedgehog signalling during neural-progenitor differentiation, and its subversion may be a relevant event in brain tumorigenesis.


The EMBO Journal | 2010

Hedgehog controls neural stem cells through p53-independent regulation of Nanog

Agnese Po; Elisabetta Ferretti; Evelina Miele; Enrico De Smaele; Arianna Paganelli; Gianluca Canettieri; Sonia Coni; Lucia Di Marcotullio; Mauro Biffoni; Luca Massimi; Concezio Di Rocco; Isabella Screpanti; Alberto Gulino

Hedgehog (Hh) pathway has a pivotal function in development and tumorigenesis, processes sustained by stem cells (SCs). The transcription factor Nanog controls stemness acting as a key determinant of both embryonic SC self‐renewal and differentiated somatic cells reprogramming to pluripotency, in concert with the loss of the oncosuppressor p53. How Nanog is regulated by microenvironmental signals in postnatal SC niches has been poorly investigated. Here, we show that Nanog is highly expressed in SCs from postnatal cerebellum and medulloblastoma, and acts as a critical mediator of Hh‐driven self‐renewal. Indeed, the downstream effectors of Hh activity, Gli1 and Gli2, bind to Nanog‐specific cis‐regulatory sequences both in mouse and human SCs. Loss of p53, a key event promoting cell stemness, activates Hh signalling, thereby contributing to Nanog upregulation. Conversely, Hh downregulates p53 but does not require p53 to control Nanog. Our data reveal a mechanism for the function of Hh in the control of stemness that represents a crucial component of an integrated circuitry determining cell fate decision and involved in the maintenance of cancer SCs.


The EMBO Journal | 2015

Gli1/DNA interaction is a druggable target for Hedgehog‐dependent tumors

Paola Infante; Mattia Mori; Romina Alfonsi; Francesca Ghirga; Federica Aiello; Sara Toscano; Cinzia Ingallina; Mariangela Siler; Danilo Cucchi; Agnese Po; Evelina Miele; Davide D'Amico; Gianluca Canettieri; Enrico De Smaele; Elisabetta Ferretti; Isabella Screpanti; Gloria Uccello Barretta; Maurizio Botta; Bruno Botta; Alberto Gulino; Lucia Di Marcotullio

Hedgehog signaling is essential for tissue development and stemness, and its deregulation has been observed in many tumors. Aberrant activation of Hedgehog signaling is the result of genetic mutations of pathway components or other Smo‐dependent or independent mechanisms, all triggering the downstream effector Gli1. For this reason, understanding the poorly elucidated mechanism of Gli1‐mediated transcription allows to identify novel molecules blocking the pathway at a downstream level, representing a critical goal in tumor biology. Here, we clarify the structural requirements of the pathway effector Gli1 for binding to DNA and identify Glabrescione B as the first small molecule binding to Gli1 zinc finger and impairing Gli1 activity by interfering with its interaction with DNA. Remarkably, as a consequence of its robust inhibitory effect on Gli1 activity, Glabrescione B inhibited the growth of Hedgehog‐dependent tumor cells in vitro and in vivo as well as the self‐renewal ability and clonogenicity of tumor‐derived stem cells. The identification of the structural requirements of Gli1/DNA interaction highlights their relevance for pharmacologic interference of Gli signaling.


Acta Diabetologica | 2015

MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion

Guido Sebastiani; Agnese Po; Evelina Miele; Giuliana Ventriglia; Elena Ceccarelli; Marco Bugliani; Lorella Marselli; Piero Marchetti; Alberto Gulino; Elisabetta Ferretti; Francesco Dotta

AbstractAimsMicroRNAs are a class of negative regulators of gene expression, which have been shown to be involved in the development of endocrine pancreas and in the regulation of insulin secretion. Since type 2 diabetes (T2D) is characterized by beta cell dysfunction, we aimed at evaluating expression levels of miR-124a and miR-375, both involved in the control of beta cell function, in human pancreatic islets obtained from T2D and from age-matched non-diabetic organ donors.MethodsWe analyzed miR-124a and miR-375 expression by real-time qRT-PCR in human pancreatic islets and evaluated the potential role of miR-124a by overexpressing or silencing such miRNA in MIN6 pseudoislets.ResultsWe identified a major miR-124a hyperexpression in T2D human pancreatic islets with no differential expression of miR-375. Of note, miR-124a overexpression in MIN6 pseudoislets resulted in an impaired glucose-induced insulin secretion. In addition, miR-124a silencing in MIN6 pseudoislets resulted in increased expression of predicted target genes (Mtpn, Foxa2, Flot2, Akt3, Sirt1 and NeuroD1) involved in beta cell function. For Mtpn and Foxa2, we further demonstrated the actual binding of miR-124a to their 3UTR sequences by luciferase assay.ConclusionsWe uncovered a major hyperexpression of miR-124a in T2D islets, whose silencing resulted in increased expression of target genes of major importance for beta cell function and whose overexpression impaired glucose-stimulated insulin secretion, leading to the hypothesis that an altered miR-124a expression may contribute to beta cell dysfunction in type 2 diabetes.


Oncogene | 2006

Alternative splicing of the ErbB-4 cytoplasmic domain and its regulation by hedgehog signaling identify distinct medulloblastoma subsets

Elisabetta Ferretti; L Di Marcotullio; Marco Gessi; Tiziana Mattei; Azzura Greco; Agnese Po; E De Smaele; Felice Giangaspero; Riccardo Riccardi; C. Di Rocco; Simonetta Pazzaglia; Marella Maroder; Maurizio Alimandi; Isabella Screpanti; Alberto Gulino

Medulloblastoma (MB) results from aberrant development of cerebellar neurons in which altered hedgehog (Hh) signalling plays a major role. We investigated the possible influence of Hh signalling on ErbB-receptor expression in MB, in particular that of the ErbB-4 CYT-1 and CYT-2 isoforms generated by alternative splicing of the cytoplasmic domain. ErbB-4 expression was downregulated in Hh-induced MBs from Patched-1+/− mice. Hh signalling (reflected by enhanced expression of the Gli1 transcription factor) inhibited ErbB-4 expression in mouse cerebellar granule progenitors and human MB cells. Analysis of 26 human primary MBs revealed a subset of 11 tumors characterized by low Gli1 levels, upregulated ErbB-4 expression and increased CYT-1:CYT-2 ratios. Interestingly, CYT-1 and Gli1 levels were inversely correlated. ErbB-4 CYT-1 and CYT-2 had different phenotypic effects in cultured MB cells: in response to neuregulin treatment, CYT-2 overexpression inhibited proliferation whereas CYT-1, which includes a phosphatidylinositol 3-kinase (PI3K)-binding site that is missing in CYT-2, enhanced resistance to starvation- and etoposide-induced apoptosis by activating PI3K/Akt signalling. CYT-1:CYT-2 ratios displayed correlation with tumor histotype and ErbB-2 levels, which are established prognostic indices for MB. These findings demonstrate that low-level Hh signalling in human MB is associated with the selective maintenance of high ErbB-4 CYT-1 expression, an alteration that exerts tumor-promoting effects.


Cell Death & Differentiation | 2013

PCAF ubiquitin ligase activity inhibits Hedgehog/Gli1 signaling in p53-dependent response to genotoxic stress

Daniela Mazzà; Paola Infante; Valeria Colicchia; A Greco; Romina Alfonsi; Mariangela Siler; Laura Antonucci; Agnese Po; E De Smaele; Elisabetta Ferretti; Carlo Capalbo; Diana Bellavia; Gianluca Canettieri; Giuseppe Giannini; Isabella Screpanti; Alberto Gulino; L Di Marcotullio

The Hedgehog (Hh) signaling regulates tissue development, and its aberrant activation is a leading cause of malignancies, including medulloblastoma (Mb). Hh-dependent tumorigenesis often occurs in synergy with other mechanisms, such as loss of p53, the master regulator of the DNA damage response. To date, little is known about mechanisms connecting DNA-damaging events to morphogen-dependent processes. Here, we show that genotoxic stress triggers a cascade of signals, culminating with inhibition of the activity of Gli1, the final transcriptional effector of Hh signaling. This inhibition is dependent on the p53-mediated elevation of the acetyltransferase p300/CBP-associated factor (PCAF). Notably, we identify PCAF as a novel E3 ubiquitin ligase of Gli1. Indeed PCAF, but not a mutant with a deletion of its ubiquitination domain, represses Hh signaling in response to DNA damage by promoting Gli1 ubiquitination and its proteasome-dependent degradation. Restoring Gli1 levels rescues the growth arrest and apoptosis effect triggered by genotoxic drugs. Consistently, DNA-damaging agents fail to inhibit Gli1 activity in the absence of either p53 or PCAF. Finally, Mb samples from p53-null mice display low levels of PCAF and upregulation of Gli1 in vivo, suggesting PCAF as potential therapeutic target in Hh-dependent tumors. Together, our data define a mechanism of inactivation of a morphogenic signaling in response to genotoxic stress and unveil a p53/PCAF/Gli1 circuitry centered on PCAF that limits Gli1-enhanced mitogenic and prosurvival response.


The Journal of Clinical Endocrinology and Metabolism | 2008

Notch signaling is involved in expression of thyrocyte differentiation markers and is down-regulated in thyroid tumors

Elisabetta Ferretti; Emanuele Tosi; Agnese Po; Angela Scipioni; Roberta Morisi; Maria Salomè B. Espinola; D. Russo; Cosimo Durante; M. Schlumberger; Isabella Screpanti; Sebastiano Filetti; Alberto Gulino

CONTEXT Notch genes encode receptors for a signaling pathway that regulates cell growth and differentiation in various contexts, but the role of Notch signaling in thyroid follicular cells has never been fully published. OBJECTIVE The objective of the study was to characterize the expression of Notch pathway components in thyroid follicular cells and Notch signaling activities in normal and transformed thyrocytes. DESIGN/SETTING AND PATIENTS: Expression of Notch pathway components and key markers of thyrocyte differentiation was analyzed in murine and human thyroid tissues (normal and tumoral) by quantitative RT-PCR and immunohistochemistry. The effects of Notch overexpression in human thyroid cancer cells and FTRL-5 cells were explored with analysis of gene expression, proliferation assays, and experiments involving transfection of a luciferase reporter construct containing human NIS promoter regions. RESULTS Notch receptors are expressed during the development of murine thyrocytes, and their expression levels parallel those of thyroid differentiation markers. Notch signaling characterized also normal adult thyrocytes and is regulated by TSH. Notch pathway components are variably expressed in human normal thyroid tissue and thyroid tumors, but expression levels are clearly reduced in undifferentiated tumors. Overexpression of Notch-1 in thyroid cancer cells restores differentiation, reduces cell growth rates, and stimulates NIS expression via a direct action on the NIS promoter. CONCLUSION Notch signaling is involved in the determination of thyroid cell fate and is a direct regulator of thyroid-specific gene expression. Its deregulation may contribute to the loss of differentiation associated with thyroid tumorigenesis.


The EMBO Journal | 2013

microRNA‐17‐92 cluster is a direct Nanog target and controls neural stem cell through Trp53inp1

Neha Garg; Agnese Po; Evelina Miele; Antonio Francesco Campese; Federica Begalli; Marianna Silvano; Paola Infante; Carlo Capalbo; Enrico De Smaele; Gianluca Canettieri; Lucia Di Marcotullio; Isabella Screpanti; Elisabetta Ferretti; Alberto Gulino

The transcription factor Nanog plays a critical role in the self‐renewal of embryonic stem cells as well as in neural stem cells (NSCs). microRNAs (miRNAs) are also involved in stemness regulation. However, the miRNA network downstream of Nanog is still poorly understood. High‐throughput screening of miRNA expression profiles in response to modulated levels of Nanog in postnatal NSCs identifies miR‐17‐92 cluster as a direct target of Nanog. Nanog controls miR‐17‐92 cluster by binding to the upstream regulatory region and maintaining high levels of transcription in NSCs, whereas Nanog/promoter association and cluster miRNAs expression are lost alongside differentiation. The two miR‐17 family members of miR‐17‐92 cluster, namely miR‐17 and miR‐20a, target Trp53inp1, a downstream component of p53 pathway. To support a functional role, the presence of miR‐17/20a or the loss of Trp53inp1 is required for the Nanog‐induced enhancement of self‐renewal of NSCs. We unveil an arm of the Nanog/p53 pathway, which regulates stemness in postnatal NSCs, wherein Nanog counteracts p53 signals through miR‐17/20a‐mediated repression of Trp53inp1.

Collaboration


Dive into the Agnese Po's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evelina Miele

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Alberto Gulino

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Carai

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Isabella Screpanti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrico De Smaele

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge