Agnetha Gustafsson
Sahlgrenska University Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agnetha Gustafsson.
Radiation Research | 1999
Marie Lundell; Anders Mattsson; Per Karlsson; Erik Holmberg; Agnetha Gustafsson; Lars-Erik Holm
The incidence of breast cancer was studied in a cohort of 17,202 women irradiated for skin hemangioma in infancy at the Radiumhemmet, Stockholm, or the Sahlgrenska University Hospital, Gothenburg. A major part of the cohort had been treated with radium-226 applicators, and the mean absorbed dose to the breasts was 0.29 Gy (range <0.01-35.8 Gy). Two hundred forty-five breast cancers were diagnosed in the cohort during the period 1958-1993, and the standardized incidence ratio (SIR) was 1.20 (95% CI 1.06-1.36). Different dose-response models were tested, and a linear model gave the best fit. Neither age at exposure, breast dose rate, ovarian dose nor time since exposure had any statistically significant modifying effect, and breast dose was the only determinant of risk. The excess relative risk per gray (ERR/Gy) was 0.35 (95% CI 0.18-0.59), which is lower than in most other studies.
Physics in Medicine and Biology | 2000
Åsa Ärlig; Agnetha Gustafsson; Lars Jacobsson; Michael Ljungberg; Carsten Wikkelsö
Monte Carlo simulation has been used to produce projections from a voxel-based brain phantom, simulating a 99mTc-HMPAO single photon emission computed tomography (SPECT) brain investigation. For comparison, projections free from the effects of attenuation and scattering were also simulated, giving ideal transaxial images after reconstruction. Three methods of attenuation correction were studied: (a) a pre-processing method, (b) a post-processing uniform method and (c) a post-processing non-uniform method using a density map. The accuracy of these methods was estimated by comparison of the reconstructed images with the ideal images using the normalized mean square error, NMSE, and quantitative values of the regional cerebral blood flow, rCBF. A minimum NMSE was achieved for the effective linear attenuation coefficient mu(eff) = 0.07 (0.09) cm(-1) for the uniform(pre) method, the effective mass attenuation coefficient mu(eff)/rho = 0.08 (0.10) cm2 g(-1) for the uniform(post) method and mu(eff)/rho = 0.12 (0.13) cm2 g(-1) for the non-uniform(post) method. Values in parentheses represent the case of dual-window scatter correction. The non-uniform(post) method performed better, as measured by the NMSE, both with and without scatter correction. Furthermore, the non-uniform(post) method gave, on average, more accurate rCBF values. Although the difference in rCBF accuracy was small between the various methods, the same method should be used for patient studies as for the reference material.
Physics in Medicine and Biology | 1998
Agnetha Gustafsson; Björn Bake; Lars Jacobsson; Åke Johansson; Michael Ljungberg; Michaela Moonen
SPECT (single photon emission computed tomography) images are distorted by photon attenuation. The effect is complex in the thoracic region due to different tissue densities. This study compares the effect on the image homogeneity of two different methods of attenuation correction in lung SPECT; one pre-processing and one post-processing method. This study also investigates the impact of attenuation correction parameters such as lung contour, body contour, density of the lung tissue and effective attenuation coefficient. The Monte Carlo technique was used to simulate SPECT studies of a digital thorax phantom containing a homogeneous activity distribution in the lung. Homogeneity in reconstructed images was calculated as the coefficient of variation (CV). The isolated effect of the attenuation correction was assessed by normalizing pixel values from the attenuation corrected lung by pixel values from the lung with no attenuation effects. Results show that the CV decreased from 12.8% with no attenuation correction to 4.4% using the post-processing method and true densities in the thoracic region. The impact of variations in the definition of the body contour was found to be marginal while the corresponding effect of variations in the lung contour was substantial.
Physics in Medicine and Biology | 2000
Agnetha Gustafsson; Åsa Ärlig; Lars Jacobsson; Michael Ljungberg; Carsten Wikkelsö
The image quality in SPECT studies of the regional cerebral blood flow (rCBF) performed with 99mTc-HMPAO is degraded by scattered photons. The finite energy resolution of the gamma camera makes the detection of scattered photons unavoidable, and this is observed in the image as an impaired contrast between grey and white matter structures. In this work, a Monte Carlo simulated SPECT study of a realistic voxel-based brain phantom was used to evaluate the resulting contrast-to-noise ratio for a number of energy window settings, with and without the dual-window scatter correction. Values of the scaling factor k, used to obtain the fraction of scattered photons in the photopeak window, were estimated for each energy window. The use of a narrower, asymmetric, energy discrimination window improved the contrast, with a subsequent increase in statistical noise due to the lower number of counts. The photopeak-window setting giving the best contrast-to-noise ratio was found to be the same whether or not scatter correction was applied. Its value was 17% centred at 142 keV. At the optimum photopeak-window setting, the contrast was improved by using scatter correction, but the contrast-to-noise ratio was made worse.
Nuclear Medicine Communications | 2003
Agnetha Gustafsson; Lars Jacobsson; Åke Johansson; Michaela Moonen; U. Tylén; Björn Bake
The effect of increasingly more sophisticated attenuation correction methods on image homogeneity has been studied in seven healthy subjects. The subjects underwent computed tomography (CT), single photon emission computed tomography (SPECT) and transmission computed tomography (TCT) of the thorax region in the supine position. Density maps were obtained from the CT and TCT studies. Attenuation corrections were performed using five different methods: (1) uniform correction using only the body contour; (2) TCT based corrections using the average lung density; (3) TCT based corrections using the pixel density; (4) CT based corrections using average lung density; and (5) CT based corrections using the pixel density. The isolated attenuation effects were assessed on quotient images generated by the division of images obtained using various attenuation correction methods divided by the non-uniform attenuation correction based on CT pixel density (reference method). The homogeneity was calculated as the coefficient of variation of the quotient images (CVatt), showing the isolated attenuation effects. Values of CVatt were on average 12.8% without attenuation correction, 10.7% with the uniform correction, 8.1% using TCT map using the average lung density value and 4.8% using CT and average lung density corrections. There are considerable inhomogeneities in lung SPECT slices due to the attenuation effect. After attenuation correction the remaining inhomogeneity is considerable and cannot be explained by statistical noise and camera non-uniformity alone.
Nuclear Medicine Communications | 2007
Pernilla Norberg; Björn Bake; Lars Jacobsson; Gudrun Alm Carlsson; Agnetha Gustafsson
BackgroundIn studies of the distribution of lung function, the image quality of lung single photon emission computed tomography (SPECT) is important and one factor influencing it is the reconstruction algorithm. AimTo systematically evaluate ordered subsets expectation maximization (OSEM) and compare it with filtered back-projection (FBP) for lung SPECT with 99mTc. MethodsThe evaluation of the number of iterations used in OSEM was based on the image quality parameter contrast. The comparison between OSEM and FBP was based on trade-off plots between statistical noise and spatial resolution for different filter parameters, collimators and count-levels. A Monte Carlo technique was used to simulate SPECT studies of a digital thorax phantom containing two sets of activity: one with a homogeneous activity distribution within the lungs and the other with superposed high- and low-activity objects. Statistical noise in the reconstructed images was calculated as the coefficient of variation (CV) and spatial resolution as full width at half-maximum (FWHM). ResultsFor the configuration studied, the OSEM reconstruction in combination with post-filtering should be used in lung SPECT studies with at least 60 MLEM equivalent iterations. Compared to FBP the spatial resolution was improved by about 1 mm. For a constant level of CV, a four-fold increase in count level resulted in an increased resolution of about 2 mm. Spatial resolution and cut-off frequency depends on what value of noise in the image is acceptable also increased by using a low-energy, high-resolution collimator for CV values above 3%. The choice of noise-reducing filter and cut-off frequency depends on what value of noise in the image is acceptable.
Radiation Protection Dosimetry | 2010
Michael Sandborg; Jonas Nilsson Althén; Agnetha Gustafsson
Owners of imaging modalities using ionising radiation should have a documented quality assurance (QA) program, as well as methods to justify new radiological procedures to ensure safe operation and adequate clinical image quality. This includes having a system for correcting divergences, written imaging protocols, assessment of patient and staff absorbed doses and a documented education and training program. In this work, how some aspects on QA have been implemented in the County of Ostergötland in Sweden, and efforts to standardise and automate the process as an integrated part of the radiology and nuclear medicine QA programs were reviewed. Some key performance parameters have been identified by a Swedish task group of medical physicists to give guidance on selecting relevant QA methods. These include low-contrast resolution, image homogeneity, automatic exposure control, calibration of air kerma-area product metres and patient-dose data registration in the radiological information system, as well as the quality of reading stations and of the transfer of images to the picture archive and communication system. IT-driven methods to automatically assess patient doses and other data on all examinations are being developed and evaluated as well as routines to assess clinical image quality by use of European quality criteria. By assessing both patient absorbed doses and clinical image quality on a routine basis, the medical physicists in our region aim to be able to spend more time on imaging optimisation and less time on periodic testing of the technical performance of the equipment, particularly on aspects that show very few divergences. The role of the Medical Physics Expert is rapidly developing towards a person doing advanced data-analysis and giving scientific support rather than one performing mainly routine periodic measurements. It is concluded that both the European Council directive and the rapid development towards more complex diagnostic imaging systems and procedures support this changing role of the medical physics professional.
EJNMMI research | 2013
Pernilla Norberg; Hans Lennart Persson; Gudrun Alm Carlsson; Björn Bake; Magnus Kentson; Michael Sandborg; Agnetha Gustafsson
BackgroundReduced ventilation in lung regions affected by chronic obstructive pulmonary disease (COPD), reflected as inhomogeneities in the single-photon emission computed tomography (SPECT) lung image, is correlated to disease advancement. An analysis method for measuring these inhomogeneities is proposed in this work. The first aim was to develop a quantitative analysis method that could discriminate between Monte Carlo simulated normal and COPD lung SPECT images. A second aim was to evaluate the ability of the present method to discriminate between human subjects with advanced COPD and healthy volunteers.MethodsIn the simulated COPD study, different activity distributions in the lungs were created to mimic the healthy lung (normal) and different levels of COPD. Gamma camera projections were Monte Carlo simulated, representing clinically acquired projections of a patient who had inhaled 125 MBq 99mTc-Technegas followed by a 10-min SPECT examination. Reconstructions were made with iterative ordered subset expectation maximisation. The coefficient of variance (CV) was calculated for small overlapping volumes covering the 3D reconstructed activity distribution. A CV threshold value (CVT) was calculated as the modal value of the CV distribution of the simulated normal. The area under the distribution curve (AUC), for CV values greater than CVT, AUC(CVT), was then calculated. Moreover, five patients with advanced emphysema and five healthy volunteers inhaled approximately 75 MBq 99mTc-Technegas immediately before the 20-min SPECT acquisition. In the human study, CVT was based on the mean CV distribution of the five healthy volunteers.ResultsA significant difference (p < 0.001) was found between the Monte-Carlo simulated normal and COPD lung SPECT examinations. The present method identified a total reduction of ventilation of approximately 5%, not visible to the human eye in the reconstructed image. In humans the same method clearly discriminated between the five healthy volunteers and five patients with advanced COPD (p < 0.05).ConclusionsWhile our results are promising, the potential of the AUC(CVT) method to detect less advanced COPD in patients needs further clinical studies.
Nuclear Medicine Communications | 2007
Anna Olsson; Åsa Ärlig; Gudrun Alm Carlsson; Agnetha Gustafsson
Background and aimThe image quality of single photon emission computed tomography (SPECT) depends on the reconstruction algorithm used. The purpose of the present study was to evaluate parameters in ordered subset expectation maximization (OSEM) and to compare systematically with filtered back-projection (FBP) for reconstruction of regional cerebral blood flow (rCBF) SPECT, incorporating attenuation and scatter correction. MethodsThe evaluation was based on the trade-off between contrast recovery and statistical noise using different sizes of subsets, number of iterations and filter parameters. Monte Carlo simulated SPECT studies of a digital human brain phantom were used. The contrast recovery was calculated as measured contrast divided by true contrast. Statistical noise in the reconstructed images was calculated as the coefficient of variation in pixel values. ResultsA constant contrast level was reached above 195 equivalent maximum likelihood expectation maximization iterations. The choice of subset size was not crucial as long as there were ≥2 projections per subset. The OSEM reconstruction was found to give 5–14% higher contrast recovery than FBP for all clinically relevant noise levels in rCBF SPECT. The Butterworth filter, power 6, achieved the highest stable contrast recovery level at all clinically relevant noise levels. The cut-off frequency should be chosen according to the noise level accepted in the image. ConclusionTrade-off plots are shown to be a practical way of deciding the number of iterations and subset size for the OSEM reconstruction and can be used for other examination types in nuclear medicine.
Clinical Physiology and Functional Imaging | 2015
Agnetha Gustafsson; Henrik Karlsson; Kerstin A Nilsson; Håkan Geijer; Anna Olsson
The aim of the study is to assess the administered activity levels versus visual‐based image quality using visual grading regression (VGR) including an assessment of the newly stated image criteria for whole‐body bone scintigraphy.