Agnieszka Krzyzanowska
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agnieszka Krzyzanowska.
Nature Neuroscience | 2006
Darren W. Williams; Shu Kondo; Agnieszka Krzyzanowska; Yasushi Hiromi; James W. Truman
Pruning is important for sculpting neural circuits, as it removes excessive or inaccurate projections. Here we show that the removal of sensory neuron dendrites during pruning in Drosophila melanogaster is directed by local caspase activity. Suppressing caspase activity prevented dendrite removal, whereas a global activation of caspases within a neuron caused cell death. A new genetically encoded caspase probe revealed that caspase activity is confined to the degenerating dendrites of pruning neurons.
European Journal of Neuroscience | 2006
Peter J. Shortland; Agnieszka Krzyzanowska; Stephen B. McMahon; John V. Priestley; Sharon Averill
Activating transcription factor 3 (ATF3) is a widely used marker of damaged primary sensory neurons that is induced in essentially all dorsal root ganglion (DRG) neurons by spinal nerve axotomy. Whether such injuries induce its expression in neurons of adjacent DRGs remains unknown. Following L5 spinal nerve ligation, experimental but not sham‐operated rats develop thermal and mechanical hypersensitivity. In the L4 DRG, 11–12% of neurons were ATF3 positive by 1 day post‐surgery, and numbers remain unchanged at 2 weeks. Importantly, sham exposure of the L5 spinal nerve produced a nearly identical number of ATF3‐positive neurons in the L4 DRG and also a substantial increase in the L5 DRG, with a similar time‐course to experimental animals. There was no correlation between behaviour and magnitude of ATF3 expression. Co‐localization studies with the DRG injury markers galanin, neuropeptide Y and nitric oxide synthase (NOS) showed that approximately 75, 50 and 25%, respectively, of L4 ATF3‐positive neurons co‐expressed these markers after L5 transection or sham surgery. Additionally, increases in galanin and NOS were seen in ATF3‐negative neurons in L4. Our results strongly suggest that the surgical exposure of spinal nerves induces ATF3 in the L4–5 DRG, irrespective of whether the L5 nerve is subsequently cut. This probably reflects minor damage to the neurons or their axons but nevertheless is sufficient to induce phenotypic plasticity. Caution is therefore warranted when interpreting the phenotypic plasticity of DRG neurons in adjacent ganglia in the absence of positive evidence that they are not damaged.
Neurobiology of Aging | 2013
Rocio Perez-Gonzalez; Consuelo Pascual; Desiree Antequera; Marta Bolós; Miriam Redondo; Daniel I. Perez; Virginia Pérez-Grijalba; Agnieszka Krzyzanowska; Manuel Sarasa; Carmen Gil; Isidro Ferrer; Ana Martinez; Eva Carro
Elevated levels of amyloid beta (Aβ) peptide, hyperphosphorylation of tau protein, and inflammation are pathological hallmarks in Alzheimers disease (AD). Phosphodiesterase 7 (PDE7) regulates the inflammatory response through the cyclic adenosine monophosphate signaling cascade, and thus plays a central role in AD. The aim of this study was to evaluate the efficacy of an inhibitor of PDE7, named S14, in a mouse model of AD. We report that APP/Ps1 mice treated daily for 4 weeks with S14 show: (1) significant attenuation in behavioral impairment; (2) decreased brain Aβ deposition; (3) enhanced astrocyte-mediated Aβ degradation; and (4) decreased tau phosphorylation. These effects are mediated via the cyclic adenosine monophosphate/cyclic adenosine monophosphate response element-binding protein signaling pathway, and inactivation of glycogen synthase kinase (GSK)3. Our data support the use of PDE7 inhibitors, and specifically S14, as effective therapeutic agents for the prevention and treatment of AD.
Frontiers in Pharmacology | 2012
Agnieszka Krzyzanowska; Eva Carro
Morphological alterations of choroid plexus in Alzheimer’s disease (AD) have been extensively investigated. These changes include epithelial atrophy, thickening of the basement membrane, and stroma fibrosis. As a result, synthesis, secretory, and transportation functions are significantly altered resulting in decreased cerebrospinal fluid (CSF) turnover. Recent studies discuss the potential impacts of these changes, including the possibility of reduced resistance to stress insults and slow clearance of toxic compounds from CSF with specific reference to the amyloid peptide. Here, we review new evidences for AD-related changes in the choroid plexus. The data suggest that the significantly altered functions of the choroid plexus contribute to the multiparametric pathogenesis of late-onset AD.
Brain and behavior | 2012
Agnieszka Krzyzanowska; Carlos Avendaño
Orofacial pain conditions are often very debilitating to the patient and difficult to treat. While clinical interest is high, the proportion of studies performed in the orofacial region in laboratory animals is relatively low, compared with other body regions. This is partly due to difficulties in testing freely moving animals and therefore lack of reliable testing methods. Here we present a comprehensive review of the currently used rodent models of inflammatory and neuropathic pain adapted to the orofacial areas, taking into account the difficulties and drawbacks of the existing approaches. We examine the available testing methods and procedures used for assessing the behavioral responses in the face in both mice and rats and provide a summary of some pharmacological agents used in these paradigms to date. The use of these agents in animal models is also compared with outcomes observed in the clinic.
Journal of Neuroscience Methods | 2011
Agnieszka Krzyzanowska; Silvia Pittolo; Marina Cabrerizo; Jorge Sánchez-López; Senthil Krishnasamy; César Venero; Carlos Avendaño
Chronic orofacial pain encompasses a range of debilitating conditions, however in contrast to other body regions, few animal models are available to investigate mechanisms and treatments in the trigeminal area. Particularly, there is a lack of reliable models and testing methods in mice. We have behaviourally tested C57BL/6 mice subjected to unilateral chronic constriction injury (CCI) of the infraorbital nerve (IoN) or unilateral injections of Complete Freunds Adjuvant (CFA) into the vibrissal pad region with the aid of von Frey filaments and air-puffs and the use of a newly designed restraining device. These models were validated by suppressing the pain responses with appropriate drugs. The IoN-CCI group showed significant hyperalgesia on the ipsilateral side in comparison to baseline values for up to 20 days post-CCI following von Frey and air-puff stimulation. Gabapentin (60mg/kg), but not saline, temporarily reversed the hyperalgesia. Animals that received a CFA injection showed hyperresponsivity to both von Frey and air-puff stimulation for up to 4 days post injection. These effects were transiently reversed with 3mg/kg i.p. morphine but not saline. Our study proposes a new restraining device for mice, and validates a behavioural testing procedure of several facial pain models in mice, allowing for reproducible and robust assessment of the effects of pain-related agents and treatments, or phenotyping of genetically modified animals.
Journal of Biological Chemistry | 2010
Irene Soria-Castro; Agnieszka Krzyzanowska; Marta López Pelaéz; Javier Regadera; Gema Ferrer; Lluís Montoliu; Rosario Rodríguez-Ramos; Margarita Fernández; Susana Alemany
Cot/tpl2 (also known as MAP3K8) has emerged as a new and potentially interesting therapeutic anti-inflammatory target. Here, we report the first study of Cot/tpl2 involvement in acute peripheral inflammation in vivo. Six hours after an intraplantar injection of zymosan, Cot/tpl2−/− mice showed a 47% reduction in myeloperoxidase activity, concomitant with a 46% lower neutrophil recruitment and a 40% decreased luminol-mediated bioluminescence imaging in vivo. Accordingly, Cot/tpl2 deficiency provoked a 25–30% reduction in luminol-mediated bioluminescence and neutrophil recruitment together with a 65% lower macrophage recruitment 4 h following zymosan-induced peritonitis. Significantly impaired levels of G-CSF and GM-CSF and of other cytokines such as TNFα, IL-1β, and IL-6, as well as some chemokines such as MCP-1, MIP-1β, and keratinocyte-derived chemokine, were detected during the acute zymosan-induced intraplantar inflammatory response in Cot/tpl2−/− mice. Moreover, Cot/tpl2 deficiency dramatically decreased the production of the hypernociceptive ligand NGF at the inflammatory site during the course of inflammation. Most importantly, Cot/tpl2 deficiency significantly reduced zymosan-induced inflammatory hypernociception in mice, with a most pronounced effect of a 50% decrease compared with wild type (WT) at 24 h following intraplantar injection of zymosan. At this time, Cot/tpl2−/− mice showed significantly reduced NGF, TNFα, and prostaglandin E2 levels compared with WT littermates. In conclusion, our study demonstrates an important role of Cot/tpl2 in the NGF, G-CSF, and GM-CSF production and myeloperoxidase activity in the acute inflammatory response process and its implication in inflammatory hypernociception.
European Urology | 2016
Giacomo Canesin; Susan Evans-Axelsson; Rebecka Hellsten; Olov Sterner; Agnieszka Krzyzanowska; Tommy Andersson; Anders Bjartell
UNLABELLED Signal transducer and activator of transcription 3 (STAT3) is known to be involved in the progression of prostate cancer (PCa) and is a key factor in drug resistance and tumor immunoescape. As a result, it represents a promising target for PCa therapy. We studied the effects of the STAT3 inhibitor galiellalactone (GL) on tumor growth and metastatic spread in vitro and in vivo. The effect of GL on cell viability, apoptosis, and invasion was studied in vitro using androgen-independent DU145 and DU145-Luc cell lines. For in vivo studies, mice were injected orthotopically with DU145-Luc cells and treated with daily intraperitoneal injections of GL for 6 wk. GL significantly reduced the growth of the primary tumor and the metastatic spread of PCa cells to regional and distal lymph nodes in vivo. Treatment with GL also resulted in decreased cell proliferation and increased apoptosis compared with controls. In vitro, GL reduces the viability and invasive abilities of DU145-Luc cells and induces apoptosis. Our results showed that tumor growth and early metastatic dissemination of PCa can be significantly reduced by GL, indicating its potential use as a therapeutic compound in advanced metastatic PCa. PATIENT SUMMARY In this study, we tested the STAT3 inhibitor galiellalactone (GL) in an animal model of PCa. We found that mice treated with GL had smaller primary tumors and decreased lymph node metastases compared with mice treated with vehicle. GL has potential for treating advanced metastatic PCa.
Molecular Pain | 2010
Ivan Rivera-Arconada; Tomaso Benedet; Carolina Roza; Begoña Torres; Jorge Barrio; Agnieszka Krzyzanowska; Carlos Avendaño; Britt Mellström; J.A. Lopez-Garcia; Jose R. Naranjo
BackgroundThe transcriptional repressor DREAM (downstream regulatory element antagonist modulator) controls the expression of prodynorphin and has been involved in the modulation of endogenous responses to pain. To investigate the role of DREAM in central mechanisms of pain sensitization, we used a line of transgenic mice (L1) overexpressing a Ca2+- and cAMP-insensitive DREAM mutant in spinal cord and dorsal root ganglia.ResultsL1 DREAM transgenic mice showed reduced expression in the spinal cord of several genes related to pain, including prodynorphin and BDNF (brain-derived neurotrophic factor) and a state of basal hyperalgesia without change in A-type currents. Peripheral inflammation produced enhancement of spinal reflexes and increased expression of BDNF in wild type but not in DREAM transgenic mice. The enhancement of the spinal reflexes was reproduced in vitro by persistent electrical stimulation of C-fibers in wild type but not in transgenic mice. Exposure to exogenous BDNF produced a long-term enhancement of dorsal root-ventral root responses in transgenic mice.ConclusionsOur results indicate that endogenous BDNF is involved in spinal sensitization following inflammation and that blockade of BDNF induction in DREAM transgenic mice underlies the failure to develop spinal sensitization.
European Urology | 2017
Nicholas Don-Doncow; Felicia Elena Marginean; Ilsa Coleman; Peter S. Nelson; Roy Ehrnström; Agnieszka Krzyzanowska; Colm Morrissey; Rebecka Hellsten; Anders Bjartell
STAT3 and its upstream activator IL6R have been implicated in the progression of prostate cancer and are possible future therapeutic targets. We analyzed 223 metastatic samples from rapid autopsies of 71 patients who had died of castration-resistant prostate cancer (CRPC) to study protein and gene expression of pSTAT3 and IL6R. Immunohistochemical analysis revealed that 95% of metastases were positive for pSTAT3 and IL6R, with varying expression levels. Bone metastases showed significantly higher expression of both pSTAT3 and IL6R in comparison to lymph node and visceral metastases. STAT3 mRNA levels were significantly higher in bone than in lymph node and visceral metastases, whereas no significant difference in IL6R mRNA expression was observed. Our study strongly supports the suggested view of targeting STAT3 as a therapeutic option in patients with metastatic CRPC. PATIENT SUMMARY We studied the levels of two proteins (pSTAT3 and IL6R) in metastases from patients who died from castration-resistant prostate cancer. We found high levels of pSTAT3and IL6R in bone metastases, suggesting that these proteins could be used as targets for new anticancer drugs.