Agnieszka Mazur-Bialy
Jagiellonian University Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agnieszka Mazur-Bialy.
BioMed Research International | 2014
Jan Bilski; Bartosz Brzozowski; Agnieszka Mazur-Bialy; Zbigniew Sliwowski; Tomasz Brzozowski
We reviewed and analyzed the relationship between physical exercise and inflammatory bowel disease (IBD) which covers a group of chronic, relapsing, and remitting intestinal disorders including Crohns disease (CD) and ulcerative colitis. The etiology of IBD likely involves a combination of genetic predisposition and environmental risk factors. Physical training has been suggested to be protective against the onset of IBD, but there are inconsistencies in the findings of the published literature. Hypertrophy of the mesenteric white adipose tissue (mWAT) is recognized as a characteristic feature of CD, but its importance for the perpetuation of onset of this intestinal disease is unknown. Adipocytes synthesize proinflammatory and anti-inflammatory cytokines. Hypertrophy of mWAT could play a role as a barrier to the inflammatory process, but recent data suggest that deregulation of adipokine secretion is involved in the pathogenesis of CD. Adipocytokines and macrophage mediators perpetuate the intestinal inflammatory process, leading to mucosal ulcerations along the mesenteric border, a typical feature of CD. Contracting skeletal muscles release biologically active myokines, known to exert the direct anti-inflammatory effects, and inhibit the release of proinflammatory mediators from visceral fat. Further research is required to confirm these observations and establish exercise regimes for IBD patients.
British Journal of Nutrition | 2013
Agnieszka Mazur-Bialy; Beata Buchala; Barbara Plytycz
Riboflavin, or vitamin B2, as a precursor of the coenzymes FAD and FMN, has an indirect influence on many metabolic processes and determines the proper functioning of several systems, including the immune system. In the human population, plasma riboflavin concentration varies from 3·1 nM (in a moderate deficiency, e.g. in pregnant women) to 10·4 nM (in healthy adults) and 300 nM (in cases of riboflavin supplementation). The purpose of the present study was to investigate the effects of riboflavin concentration on the activity and viability of macrophages, i.e. on one of the immunocompetent cell populations. The study was performed on the murine monocyte/macrophage RAW 264.7 cell line cultured in medium with various riboflavin concentrations (3·1, 10·4, 300 and 531 nM). The results show that riboflavin deprivation has negative effects on both the activity and viability of macrophages and reduces their ability to generate an immune response. Signs of riboflavin deficiency developed in RAW 264.7 cells within 4 d of culture in the medium with a low riboflavin concentration (3·1 nM). In particular, the low riboflavin content reduced the proliferation rate and enhanced apoptotic cell death connected with the release of lactate dehydrogenase. The riboflavin deprivation impaired cell adhesion, completely inhibited the respiratory burst and slightly impaired phagocytosis of the zymosan particles. In conclusion, macrophages are sensitive to riboflavin deficiency; thus, a low riboflavin intake in the diet may affect the immune system and may consequently decrease proper host immune defence.
Current Neuropharmacology | 2016
Bartosz Brzozowski; Agnieszka Mazur-Bialy; Robert Pajdo; Slawomir Kwiecien; Jan Bilski; Malgorzata Zwolinska-Wcislo; Tomasz Mach; Tomasz Brzozowski
Background Stress of different origin is known to alter so called “brain-gut axis” and contributes to a broad array of gastrointestinal disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and other functional gastrointestinal diseases. The stressful situations and various stressors including psychosocial events, heat, hypo- and hyperthermia may worsen the course of IBD via unknown mechanism. The aims of this paper were to provide an overview of experimental and clinical evidences that stress activates the brain-gut axis which results in a mucosal mast cells activation and an increase in the production of proinflammatory cytokines and other endocrine and humoral mediators. Methods Research and online content related to effects of stress on lower bowel disorders are reviewed and most important mechanisms are delineated. Results Brain conveys the neural, endocrine and circulatory messages to the gut via brain-gut axis reflecting changes in corticotrophin releasing hormone, mast cells activity, neurotransmission at the autonomic nerves system and intestinal barrier function all affecting the pathogenesis of animal colitis and human IBD. Stress triggers the hypothalamus-pituitary axis and the activation of the autonomic nervous system, an increase in cortisol levels and proinflammatory cytokines such as tumor necrosis factor-alpha, interleukin-8, interleukin-1beta and interleukin-6. Conclusion The acute or chronic stress enhances the intestinal permeability weakening of the tight junctions and increasing bacterial translocation into the intestinal wall. An increased microbial load in the colonic tissue, excessive cytokine release and a partially blunted immune reactivity in response to stress result in its negative impact on IBD.
International Journal of Molecular Sciences | 2016
Katarzyna Magierowska; Marcin Magierowski; Marcin Surmiak; Juliusz Adamski; Agnieszka Mazur-Bialy; Robert Pajdo; Zbigniew Sliwowski; Slawomir Kwiecien; Tomasz Brzozowski
Carbon monoxide (CO) produced by heme oxygenase (HO)-1 and HO-2 or released from the CO-donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) causes vasodilation, with unknown efficacy against stress-induced gastric lesions. We studied whether pretreatment with CORM-2 (0.1–10 mg/kg oral gavage (i.g.)), RuCl3 (1 mg/kg i.g.), zinc protoporphyrin IX (ZnPP) (10 mg/kg intraperitoneally (i.p.)), hemin (1–10 mg/kg i.g.) and CORM-2 (1 mg/kg i.g.) combined with NG-nitro-l-arginine (l-NNA, 20 mg/kg i.p.), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 mg/kg i.p.), indomethacin (5 mg/kg i.p.), SC-560 (5 mg/kg i.g.), and celecoxib (10 mg/kg i.g.) affects gastric lesions following 3.5 h of water immersion and restraint stress (WRS). Gastric blood flow (GBF), the number of gastric lesions and gastric CO and nitric oxide (NO) contents, blood carboxyhemoglobin (COHb) level and the gastric expression of HO-1, HO-2, hypoxia inducible factor 1α (HIF-1α), tumor necrosis factor α (TNF-α), cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) were determined. CORM-2 (1 mg/kg i.g.) and hemin (10 mg/kg i.g.) significantly decreased WRS lesions while increasing GBF, however, RuCl3 was ineffective. The impact of CORM-2 was reversed by ZnPP, ODQ, indomethacin, SC-560 and celecoxib, but not by l-NNA. CORM-2 decreased NO and increased HO-1 expression and CO and COHb content, downregulated HIF-1α, as well as WRS-elevated COX-2 and iNOS mRNAs. Gastroprotection by CORM-2 and HO depends upon CO’s hyperemic and anti-inflammatory properties, but is independent of NO.
Mediators of Inflammation | 2015
Jan Bilski; Agnieszka Mazur-Bialy; Bartosz Brzozowski; Marcin Magierowski; Katarzyna Jasnos; Gracjana Krzysiek-Maczka; Katarzyna Urbanczyk; Agata Ptak-Belowska; Malgorzata Zwolinska-Wcislo; Tomasz Mach; Tomasz Brzozowski
Although progress has been recently made in understanding of inflammatory bowel diseases (IBD), their etiology is unknown apart from several factors from adipose tissue and skeletal muscles such as cytokines, adipokines, and myokines were implicated in the pathogenesis of ulcerative colitis. We studied the effect high-fat diet (HFD; cholesterol up to 70%), low-fat diet (LFD; cholesterol up to 10%), and the normal diet (total fat up to 5%) in rats with TNBS colitis forced to treadmill running exercise (5 days/week) for 6 weeks. In nonexercising HFD rats, the area of colonic damage, colonic tissue weight, the plasma IL-1β, TNF-α, TWEAK, and leptin levels, and the expression of IL-1β-, TNF-α-, and Hif1α mRNAs were significantly increased and a significant fall in plasma adiponectin and irisin levels was observed as compared to LFD rats. In HFD animals, the exercise significantly accelerated the healing of colitis, raised the plasma levels of IL-6 and irisin, downregulated the expression of IL-1β, TNF-α, and Hif1α, and significantly decreased the plasma IL-1β, TNF α, TWEAK, and leptin levels. We conclude that HFD delays the healing of colitis in trained rats via decrease in CBF and plasma IL-1β, TNF-α, TWEAK, and leptin levels and the release of protective irisin.
International Journal of Molecular Sciences | 2017
Agnieszka Mazur-Bialy; Ewa Pocheć; Marcin Zarawski
Irisin, an adipomiokine known as a mediator of physical activity, induces the browning of adipose tissue and it has potentially protective properties in the development of obesity-related states, such as insulin resistance, arteriosclerosis, and type 2 diabetes. Despite numerous studies conducted on this factor, still little is known about its impact on the functioning of immunocompetent cells, but its potential anti-inflammatory properties were previously suggested. In the current study we investigated the role of irisin (0-100 nM) in the downstream pathway activation of Toll-like receptor 4 (TLR4) in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS; 100 ng/mL). The results have shown that irisin in high concentrations (50, 100 nM) significantly decreased the TLR4 and MyD88 protein levels, as well as the phosphorylation of nuclear factor-κB (NF-κB), consequently leading to the reduction in the release of crucial pro-inflammatory cytokines. The above was confirmed for interleukin 1β (IL-1β), tumor necrosis factor α (TNFα), interleukin 6 (IL-6), keratinocyte chemoattractant (KC), monocyte chemotactic protein 1 (MCP-1), as well as for high mobility group box 1 (HMGB1). Moreover, our results indicate that this effect is connected with irisins impact on the phosphorylation of mitogen-activated protein kinases (MAPKs), where a significant reduction in p-JNK and p-ERK but not p-p38 was observed. In conclusion, these data suggest that irisin has potentially anti-inflammatory properties connected with the downregulation of downstream pathways of TLR4/MyD88.
Life Sciences | 2017
Agnieszka Mazur-Bialy; Ewa Pocheć
Aims: Adipose tissue is an endocrine organ important for regulation of such physiological processes as energy metabolism or lipids homeostasis. In an obesity state, it participates in the induction of chronic systemic inflammation accompanied by pro‐inflammatory cytokines and fatty acid elevation. For this reasons, adipose tissue is involved in, e.g., insulin resistance, type 2 diabetes or hyperlipidemia development. In our previous study, we have shown that riboflavin deficiency induces a pathological pro‐inflammatory response of macrophages, the main component of adipose tissue. Therefore, in the current study, we investigated the alteration of the pro‐inflammatory activity of adipocytes. Main methods: The study was conducted on mouse 3T3 L1 preadipocytes differentiated to adipocyte and culture in the state of riboflavin deficiency (3.1 nM) or control condition (10.4 nM). The cell viability, adiposity and glucose uptake was assessed. Moreover, mRNA expression, as well as crucial pro‐inflammatory cytokines (TNF&agr;, IL‐6) and adipokines (adiponectin, leptin, resistin) release and NF&kgr;B activation, were evaluated. Key findings: Results showed that riboflavin deprivation induced a significant elevation in adipocyte lipolysis and enhance obesity‐related apoptosis of adipocytes. The generation of reactive oxygen species was enhanced in riboflavin‐deficient adipocytes by 43%. Moreover, NF&kgr;B phosphorylation and the expression and release of both TNF&agr;, IL‐6 as well as leptin were elevated in a deficient group what was accompanied by a reduction of adiponectin level. Conclusion: Our study shows that riboflavin deficiency can promote the intensification of pro‐inflammatory activity of adipocyte cells, leading consequently to the severity of chronic inflammation that accompanies obesity state.
Life Sciences | 2012
Agnieszka Mazur-Bialy; Elzbieta Kolaczkowska; Barbara Plytycz
AIMS We compared the effects of riboflavin pre-injection, co-injection and post-injection on several symptoms of zymosan-induced peritonitis in male Swiss mice. Additionally, the effects of i.p. injection of riboflavin itself were elucidated. MAIN METHODS Peritonitis was induced in Swiss mice (50 animals) by i.p. zymosan (Z; 40mg/kg) injection. Riboflavin (R; 0, 20, 50, or 100mg/kg) was applied either alone or in combination with zymosan. In the latter case riboflavin was administered either together with zymosan (R group), or 30min before zymosan (R-Z group), or 1h later (Z-R group). The nociceptive response was evaluated by counting body writhes. The peritoneal exudates retrieved 4h after the R or Z injection were analyzed for the numbers and apoptosis of polymorphonuclear leukocytes (PMNs), and levels of metalloproteinase 9 (MMP-9), nitric oxide, and inflammatory cytokines, IL-12p70, TNFα, MCP-1, IL-6, IL-10, IFNγ. KEY FINDINGS Riboflavin itself induced nociceptive-related body writhes and a moderate inflammatory response manifested by PMN influx and the release of some cytokines and MMP-9. In contrast, antinociceptive properties of riboflavin were significant in the ZR group co-injected with the lowest dose of riboflavin (ZR20). At the 4th hour of zymosan-induced peritonitis an intraperitoneal accumulation of PMNs was decreased in the riboflavin-treated groups and cytokine profiles were modified according to riboflavin dose and the time of injection. SIGNIFICANCE Riboflavin itself induces low-grade nociception and inflammation while its effects on zymosan-induced inflammation are dependent on the dose and time of its application: either before or during inflammation.
Nutrients | 2017
Agnieszka Mazur-Bialy; Jan Bilski; Dagmara Wojcik; Bartosz Brzozowski; Marcin Surmiak; Magdalena Hubalewska-Mazgaj; Anna Chmura; Marcin Magierowski; Katarzyna Magierowska; Tomasz Mach; Tomasz Brzozowski
Inflammatory bowel diseases (IBDs) are a heterogeneous group of disorders exhibited by two major phenotypic forms: Crohn‘s disease and ulcerative colitis. Although the aetiology of IBD is unknown, several factors coming from the adipose tissue and skeletal muscles, such as cytokines, adipokines and myokines, were suggested in the pathogenesis of ulcerative colitis; however, it has not been extensively studied whether voluntary exercise can ameliorate that disorder. We explored the effect of moderate exercise (i.e., voluntary wheel running) on the disease activity index (DAI), colonic blood flow (CBF), plasma irisin and adiponectin levels and real-time PCR expression of proinflammatory markers in mesenteric fat in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis fed a high-fat diet (HFD) compared to those on a standard chow diet (SD). Macroscopic and microscopic colitis in sedentary SD mice was accompanied by a significant fall in CBF, some increase in colonic tissue weight and a significant increase in the plasma levels of tumour necrosis factor-alpha (TNF-α), IL-6, monocyte chemotactic protein 1 (MCP-1) and IL-13 (p < 0.05). In sedentary HFD mice, colonic lesions were aggravated, colonic tissue weight increased and the plasma TNF-α, IL-6, MCP-1, IL-1β and leptin levels significantly increased. Simultaneously, a significant decrease in the plasma irisin and adiponectin levels was observed in comparison with SD mice (p < 0.05). Exercise significantly decreased macroscopic and microscopic colitis, substantially increased CBF and attenuated the plasma TNF-α, IL-6, MCP-1, IL-1β and leptin levels while raising the plasma irisin and the plasma and WAT concentrations of adiponectin in HFD mice (p < 0.05). We conclude that: (1) experimental colitis is exacerbated in HFD mice, possibly due to a fall in colonic microcirculation and an increase in the plasma and mesenteric fat content of proinflammatory biomarkers; and (2) voluntary physical activity can attenuate the severity of colonic damage in mice fed a HFD through the release of protective irisin and restoration of plasma adiponectin.
Mediators of Inflammation | 2017
Jan Bilski; Agnieszka Mazur-Bialy; Dagmara Wojcik; Janina Zahradnik-Bilska; Bartosz Brzozowski; Marcin Magierowski; Tomasz Mach; Katarzyna Magierowska; Tomasz Brzozowski
Over the past few years, the role of intestinal alkaline phosphatase (IAP) as a crucial mucosal defence factor essential for maintaining gut homeostasis has been established. IAP is an important apical brush border enzyme expressed throughout the gastrointestinal tract and secreted both into the intestinal lumen and into the bloodstream. IAP exerts its effects through dephosphorylation of proinflammatory molecules including lipopolysaccharide (LPS), flagellin, and adenosine triphosphate (ATP) released from cells during stressful events. Diminished activity of IAP could increase the risk of disease through changes in the microbiome, intestinal inflammation, and intestinal permeability. Exogenous IAP exerts a protective effect against intestinal and systemic inflammation in a variety of diseases and represents a potential therapeutic agent in diseases driven by gut barrier dysfunction such as IBD. The intestinal protective mechanisms are impaired in IBD patients due to lower synthesis and activity of endogenous IAP, but the pathomechanism of this enzyme deficiency remains unclear. IAP has been safely administered to humans and the human recombinant form of IAP has been developed. This review was designed to provide an update in recent research on the involvement of IAP in intestinal inflammatory processes with focus on IBD in experimental animal models and human patients.