Agnieszka Mostowska
University of Warsaw
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agnieszka Mostowska.
Protoplasma | 2000
Ewa Simeonova; A. Sikora; Maria Charzyńska; Agnieszka Mostowska
SummaryLeaf senescence is a highly regulated stage in the plant life cycle, leading to cell death, recently examined as a type of the programmed cell death (PCD). One of the basic features of PCD is the condensation of nuclear chromatin which is caused by endonucleolytic degradation of nuclear DNA (nDNA). In our investigations, we applied the technique of the single-cell electrophoresis system (“comet assay”) in order to determine the type of nDNA fragmentation during leaf senescence. The comet assay, a sensitive method revealing nonrandom internucleosomal damage that is specific for PCD, is especially useful for the detection of nDNA degradation in isolated viable cells. Simultaneously, we analyzed the mesophyll cell ultrastructure and the photosynthetic-pigment concentration in the leaves of two species,Ornithogalum virens andNicotiana tabacum, representing mono- and dicotyledonous plants which differ in the pattern of leaf differentiation. These investigations demonstrated that, in both species, the comet assay revealed nDNA degradation in yellow-leaf protoplasts containing chloroplasts that showed already changed ultrastructure (swelled or completely degraded thylakoids) and cell nuclei with a significant condensation of chromatin. There was no nDNA degradation in green-leaf protoplasts containing differentiated chloroplasts with numerous grana stacks and nuclei with dispersed chromatin. The analysis of intermediate developmental stage showed that the degradation of nDNA precedes condensation of nuclear chromatin. Thus the comet assay is a very useful and sensitive method for early detection of PCD. Moreover, results of our studies indicate that leaf senescence involves PCD.
Journal of Plant Growth Regulation | 2003
Izabella Kołodziejek; Joanna Kozioł; Maria Wałęza; Agnieszka Mostowska
Leaf senescence is a genetically regulated stage in the plant life cycle leading to death. Ultrastructural analysis of a particular region of the leaf and even of a particular mesophyll cell can give a clear picture of the time development of the process. In this study we found relations between changes in mesophyll cell ultrastructure and pigment concentration in every region of the leaf during leaf senescence in maize and barley. Our observations demonstrated that each mesophyll cell undergoes a similar senescence sequence of events: a) chromatin condensation, b) degradation of thylakoid membranes and an increase in the number of plastoglobules, c) damage to internal mitochondrial membrane and chloroplast destruction. Degradation of chloroplast structure is not fully correlated with changes in photosynthetic pigment content; chlorophyll and carotenoid content remained at a rather high level in the final stage of chloroplast destruction. We also compared the dynamics of leaf senescence between maize and barley. We showed that changes to the mesophyll cells do not occur at the same time in different parts of the leaf. The senescence damage begins at the base and moves to the top of the leaf. The dynamics of mesophyll cell senescence is different in leaves of both analyzed plant species; in the initial stages, the process was faster in barley whereas in the later stages the process occurred more quickly in maize. At the final stage, the oldest barley mesophyll cells were more damaged than maize cells of the same age.
Protoplasma | 2004
Ewa Simeonova; Maciej Garstka; J. Kozioł-Lipińska; Agnieszka Mostowska
Summary.Analysis of the mitochondrial transmembrane potential (ΔΨm) with the help of the JC-1 fluorochrome (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide) during mesophyll leaf senescence was performed in order to determine whether a reduction of ΔΨm takes place during mesophyll senescence and whether plant mitochondria, like mammalian ones, might be involved in the induction of programmed cell death. Fluorescence analysis of mesophyll protoplasts of Pisum sativum in a confocal microscope, fluorescent spectra analysis and time dependence of fluorescence intensity of monomers and of J-aggregates revealed that JC-1 is incorporated and accumulated specifically in plant mitochondria. Analysis of ΔΨm during mesophyll protoplast senescence revealed that two subpopulations of mitochondria which differ in ΔΨm exist in all analyzed stages of leaf senescence. The first subpopulation contains mitochondria with red fluorescence of J-aggregates due to an unperturbed high ΔΨm. The second subpopulation comprises mitochondria with green fluorescence of monomers due to a low ΔΨm, proving total depolarization of mitochondrial membranes. Fluorescence analysis demonstrated that even in the latest analyzed stages of leaf senescence, mitochondria with a high ΔΨm still exist. Fluorometric measurements revealed that the fluorescence intensity of J-aggregates decreases with the age of plants, which indicates that a reduction of ΔΨm during the mesophyll senescence process takes place; however, it does not take place within the whole population of mitochondria of the same protoplast. The reason of this can be due to a dramatic reorganization of mitochondria in mesophyll cells and the appearance of large mitochondria with local heterogeneity of ΔΨm in the oldest analyzed stages. All mitochondria in every stage of senescence maintained their membrane organization even when their size, distribution, and spatial organization in protoplasts changed dramatically. We stated that the reduction of ΔΨm does not directly induce programmed cell death in mesophyll cells, as opposed to animal apoptosis.
Biochimica et Biophysica Acta | 2010
Izabela Rumak; Katarzyna Gieczewska; Borys Kierdaszuk; Wiesław I. Gruszecki; Agnieszka Mostowska; Radosław Mazur; Maciej Garstka
We performed for the first time three-dimensional (3D) modelling of the entire chloroplast structure. Stacks of optical slices obtained by confocal laser scanning microscope (CLSM) provided a basis for construction of 3D images of individual chloroplasts. We selected pea (Pisum sativum) and bean (Phaseolus vulgaris) chloroplasts since we found that they differ in thylakoid organization. Pea chloroplasts contain large distinctly separated appressed domains while less distinguished appressed regions are present in bean chloroplasts. Different magnesium ion treatments were used to study thylakoid membrane stacking and arrangement. In pea chloroplasts, as demonstrated by 3D modelling, the increase of magnesium ion concentration changed the degree of membrane appression from wrinkled continuous surface to many distinguished stacked areas and significant increase of the inter-grana area. On the other hand 3D models of bean chloroplasts exhibited similar but less pronounced tendencies towards formation of appressed regions. Additionally, we studied arrangements of thylakoid membranes and chlorophyll-protein complexes by various spectroscopic methods, Fourier-transform infrared spectroscopy (FTIR) among others. Based on microscopic and spectroscopic data we suggested that the range of chloroplast structure alterations under magnesium ions treatment is a consequence of the arrangement of supercomplexes. Moreover, we showed that stacking processes always affect the structural changes of chloroplast as a whole.
Biochimica et Biophysica Acta | 2012
Łucja Rudowska; Katarzyna Gieczewska; Radosław Mazur; Maciej Garstka; Agnieszka Mostowska
Chloroplast biogenesis is a multistage process leading to fully differentiated and functionally mature plastids. Complex analysis of chloroplast biogenesis was performed on the structural and functional level of its organization during the photoperiodic plant growth after initial growth of seedlings in the darkness. We correlated, at the same time intervals, the structure of etioplasts transforming into mature chloroplasts with the changes in the photosynthetic protein levels (selected core and antenna proteins of PSI and PSII) and with the function of the photosynthetic apparatus in two plant species: bean (Phaseolus vulgaris L.) and pea (Pisum sativum L). We selected these plant species since we demonstrated previously that the mature chloroplasts differ in the thylakoid organization. We showed that the protein biosynthesis as well as photosynthetic complexes formation proceeds gradually in both plants in spite of periods of darkness. We found that both steady structural differentiation of the bean chloroplast and reformation of prolamellar bodies in pea were accompanied by a gradual increase of the photochemical activity in both species. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Protoplasma | 2007
Izabella Kołodziejek; J. Kozioł-Lipińska; Maria Wałęza; J. Korczyński; Agnieszka Mostowska
Summary.Leaf senescence is a highly coordinated process which involves programmed cell death (PCD). Early stages of leaf senescence occurring during normal leaf ontogenesis, but not triggered by stress factors, are less well known. In this study, we correlated condensation of chromatin and nuclear DNA (nDNA) fragmentation, two main features of PCD during early senescence in barley leaves, with the appearance of nitric oxide (NO) within leaf tissue. With the help of the alkaline version of the comet assay, together with measurements of nDNA fluorescence intensity, we performed a detailed analysis of the degree of nDNA fragmentation. We localised NO in vivo and in situ within the leaf and photometrically measured its concentration with the NO-specific fluorochrome 4-amino-5-methylamino-2′,7′-difluorofluorescein. We found that both nDNA fragmentation and chromatin condensation occurred quite early during barley leaf senescence and always in the same order: first nDNA fragmentation, in leaves of 6-day-old seedlings, and later chromatin condensation, in the apical part of leaves from 10-day-old seedlings. PCD did not start simultaneously even in neighbouring cells and probably did not proceed at the same rate. NO was localised in vivo and in situ within the cytoplasm, mainly in mitochondria, in leaves at the same stage as those in which chromatin condensation was observed. Localisation of NO in vascular tissue and in a large number of mesophyll cells during the senescence process might imply its transport to other parts of the leaf and its involvement in signalling between cells. The fact that the highest concentration of NO was found in the cytoplasm of mesophyll cells in the earliest stage of senescence and lower concentrations were found during later stages might suggest that NO plays an inductive role in PCD.
BMC Plant Biology | 2012
Izabela Rumak; Radosław Mazur; Katarzyna Gieczewska; J. Kozioł-Lipińska; Borys Kierdaszuk; Wojtek P. Michalski; Brian J. Shiell; Jan Henk Venema; Wim J. Vredenberg; Agnieszka Mostowska; Maciej Garstka
BackgroundThe thylakoid system in plant chloroplasts is organized into two distinct domains: grana arranged in stacks of appressed membranes and non-appressed membranes consisting of stroma thylakoids and margins of granal stacks. It is argued that the reason for the development of appressed membranes in plants is that their photosynthetic apparatus need to cope with and survive ever-changing environmental conditions. It is not known however, why different plant species have different arrangements of grana within their chloroplasts. It is important to elucidate whether a different arrangement and distribution of appressed and non-appressed thylakoids in chloroplasts are linked with different qualitative and/or quantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranes and whether this arrangement influences the photosynthetic efficiency.ResultsOur results from TEM and in situ CLSM strongly indicate the existence of different arrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids are regularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, while irregular appressed thylakoid membranes within bean chloroplasts correspond to smaller and less distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show a distinct spatial separation of stacked thylakoids from stromal spaces whereas spatial division of stroma and thylakoid areas in bean chloroplasts are more complex. Structural differences influenced the PSII photochemistry, however without significant changes in photosynthetic efficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well as spectroscopic investigations indicated a similar proportion between PSI and PSII core complexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones. Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSI supercomplexes between species are suggested.ConclusionsBased on proteomic and spectroscopic investigations we postulate that the differences in the chloroplast structure between the analyzed species are a consequence of quantitative proportions between the individual CP complexes and its arrangement inside membranes. Such a structure of membranes induced the formation of large stacked domains in pea, or smaller heterogeneous regions in bean thylakoids. Presented 3D models of chloroplasts showed that stacked areas are noticeably irregular with variable thickness, merging with each other and not always parallel to each other.
Biologia Plantarum | 2006
Izabella Kołodziejek; Maria Wałęza; Agnieszka Mostowska
In this study we report on morphological and histochemical indicators of maize and barley leaf senescence. We determined how the traits such as distribution of stomata and hairs, presence of epicuticular wax, staining of tissues with toluidine blue, change with leaf age and within the leaf blade. We identified regions of young, non-mature leaves as exhibiting juvenile phase, regions with features typical for mature and fully differentiated leaves-as an adult phase and regions with traits of age damage as a senescing phase. Ultrastructural analysis of these regions of leaves gives a clear picture of the time development of the senescence process. Appearance of morphological and histological indicators of senescence in certain regions of leaf is correlated with ultrastructural changes of mesophyll cells of the same regions. We have thus found a relatively simple method of estimating the stage of senescence both in maize and barley.
Protoplasma | 1986
Agnieszka Mostowska
SummaryWe analyzed transformation, recrystallization, splitting and dispersion of prolamellar bodies during chloroplast development in pea seedlings illuminated by white, red and blue light of low intensity. With the help of a stereometric method we determined that there was a significant increase of prolamellar body number and a sharp decrease of their volume in differentiating chloroplast even in the first 2 hours of illumination. Decrease of prolamellar body dimensions was due both to gradual dispersion of its elements into primary thylakoids (indicated by the decrease of total volume of prolamellar bodies in plastid) and to splitting of prolamellar bodies (indicated by the increase of number of promellar bodies in plastid). Red light was more effective in transformation, splitting and dispersion of prolamellar bodies than blue light during the first 8–12 hours. Longer treatment with blue light had a stronger influence on these processes and on complete recrystallization than other light treatments.
Protoplasma | 1991
Agnieszka Mostowska; Ursula Kittsteiner; Wolfhart Rüdiger
SummaryWe have examined ultrastructural changes of mesophyll cells in pea leaves induced by the photodynamic herbicide 1,10-phenanthroline (Phe). Dark incubation of pea plants did not cause any damage in plants or changes in the ultrastructure of mesophyll cells. Two hours of illumination after pretreatment with Phe caused photooxidative damage in plant but was not sufficient to markedly change the ultrastructure, although dilation of endoplasmic reticulum (ER) cisternae occurred. Illumination for 12 h caused inhibition of grana formation in pretreated plants. These ultrastructural changes and the inhibition of chlorophyll (Chl) accumulation may be due to the inhibition of transport of certain proteins to the plastids, diminished accumulation of chlorophyll proteins (e.g., LHCP) and a decrease in activity of the chlorophyll synthetase.