Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agnieszka Pałucha-Poniewiera is active.

Publication


Featured researches published by Agnieszka Pałucha-Poniewiera.


Psychopharmacology | 2010

On the mechanism of the antidepressant-like action of group II mGlu receptor antagonist, MGS0039

Agnieszka Pałucha-Poniewiera; Joanna M. Wierońska; Piotr Brański; Katarzyna Stachowicz; Shigeyuki Chaki; Andrzej Pilc

RationaleSeveral studies have suggested that modulation of the glutamatergic system could be a new, efficient way to achieve antidepressant activity. Behavioral data showed that group II mGlu receptor antagonists (i.e., (1R, 2R, 3R, 5R, 6R)-2-amino-3-(3,4-dichlorobenzyloxy)-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (MGS0039) and (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xan th-9-yl) propanoic acid (LY341495)) elicited antidepressant activity in several animal models of depression in rats and/or mice. Although the antidepressant-like activity of MGS0039 and LY341495 is well documented, the mechanism of the antidepressant action of these compounds is still not clear.ObjectivesThe aim of the present study was to specify the role of the serotonergic system in the mechanism of the antidepressant-like activity of group II mGlu receptor ligands by using the tail suspension test (TST) in mice; the role of AMPA receptors was also investigated. Furthermore, the possible antidepressant-like action of MGS0039 using the olfactory bulbectomy (OB) model of depression in rats was investigated.ResultsThe results of the TST studies showed that antidepressant-like action of group II mGlu receptor antagonists does not depend on serotonergic system activation. However, the AMPA receptor seems to play a key role in the antidepressant-like action of these compounds. Moreover, we have shown that repeated administration of MGS0039 attenuated OB-related deficits, confirming antidepressant-like activity of the tested compound.ConclusionsThe results suggest that the blockade of group II mGlu receptors may be effective in the treatment of depression. Moreover, we have found that the mechanism of action of group II mGlu receptor antagonists differs from that of typical antidepressants, such as SSRIs.


Journal of Pharmacology and Experimental Therapeutics | 2010

The Antidepressant-Like Action of Metabotropic Glutamate 7 Receptor Agonist N,N′-Bis(Diphenylmethyl)-1,2-Ethanediamine (AMN082) Is Serotonin-Dependent

Agnieszka Pałucha-Poniewiera; Piotr Brański; Tomasz Lenda; Andrzej Pilc

Behavioral studies show that modulation of the glutamatergic system might be an efficient way to achieve antidepressant activity. Among the group III metabotropic glutamate (mGlu) receptors, the mGlu7 receptor subtype seems to be the most promising target for potential antidepressants. It has been shown that a selective, allosteric mGlu7 receptor agonist, N,N′-bis (diphenylmethyl)-1,2-ethanediamine (AMN082), induced antidepressant-like action in behavioral tests in mice, although the mechanisms responsible for this action remained unknown. Here, we decided to investigate the possible role of the serotonergic system in the antidepressant-like activity of AMN082 in both the forced swim test (FST) in rats and the tail suspension test (TST) in mice. We found that AMN082 (1–10 mg/kg i.p.) induced a dose-dependent reduction in the immobility of rats and an increase in their swimming behavior, whereas there were not any changes in climbing behavior in the FST in rats. In the TST in mice we found that AMN082 (3 mg/kg i.p.) did not induce an antidepressant-like effect after depletion of serotonin (5-HT) with para-chlorophenylalanine. Moreover, we revealed that citalopram, but not reboxetine, when combined with AMN082 (all compounds used at low subeffective doses), induced a significant antidepressant-like effect in the TST. We also discovered that the 5-HT1A receptor antagonist N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridynyl) cyclohexane-carboxamide (WAY100635) (0.1 mg/kg s.c.), but not the 5-HT2A/2C receptor antagonist ritanserin (0.5 mg/kg i.p.), blocked the antidepressant-like action of AMN082. Altogether, the results of our studies show that the antidepressant-like action of the mGlu7 receptor-positive modulator AMN082 depends on the activation of the serotonergic system.


Neuropharmacology | 2008

Peripheral administration of group III mGlu receptor agonist ACPT-I exerts potential antipsychotic effects in rodents

Agnieszka Pałucha-Poniewiera; Aleksandra Kłodzińska; Katarzyna Stachowicz; Krzysztof Tokarski; G. Hess; S. Schann; M. Frauli; P. Neuville; Andrzej Pilc

Several lines of evidence implicate dysfunction of glutamatergic neurotransmission in the pathophysiology of schizophrenia. Previous behavioral studies have indicated that metabotropic glutamate (mGlu) receptors may be useful targets for the treatment of psychosis. It has been shown that agonists and positive allosteric modulators of group II mGlu receptors produce potential antipsychotic effects in behavioral models of schizophrenia in rodents. Group III mGlu receptors seem to be also promising targets for a variety of neuropsychiatric and neurodegenerative disorders. However, despite encouraging data in animal models, most ligands of group III mGlu receptors still suffer from weak affinities, incapacity to cross the blood-brain barrier or absence of full pharmacological characterization. These limitations slow down the validation process of group III mGlu receptors as therapeutic targets. In this work, we choose to study an agonist of group III mGlu receptors (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid (ACPT-I) using intraperitoneal administration in three animal behavioral models predictive of psychosis or hallucinations. The results of the present study show that ACPT-I, given at doses of 10 or 30mg/kg, decreased MK-801-induced hyperlocomotion and at a dose of 100mg/kg decreased amphetamine-induced hyperlocomotion in rats. Furthermore, ACPT-I dose-dependently decreased DOI-induced head twitches in mice and suppresses DOI-induced frequency and amplitude of spontaneous EPSPs in slices from mouse brain frontal cortices. These data demonstrate that ACPT-I is a brain-penetrating compound and illustrates its promising therapeutic role for the treatment of schizophrenia.


Expert Opinion on Investigational Drugs | 2012

Investigational NMDA receptor modulators for depression

Bernadeta Szewczyk; Agnieszka Pałucha-Poniewiera; Ewa Poleszak; Andrzej Pilc; Gabriel Nowak

Introduction: With regards to depression, the role of N-methyl-D-aspartate receptor (NMDA) was pursued many years ago, mainly in the form of preclinical studies. Since then, there have been several clinical data in the literature indicating the efficacy of NMDA receptor antagonists of either stand-alone or as an adjunct therapy in depression and depression-related diseases. Areas covered: The present review focuses on clinical data of well-known and recently discovered NMDA receptor antagonists/modulators and their mechanisms of action. Expert opinion: Several NMDA receptor modulators have been tested in both human and animal studies to examine their potential antidepressant activity. Most of the compounds that exhibited beneficial properties in the animal tests and models of depression either have never been tested or did not show efficacy in humans. For some of them, such as ketamine, where a consistently reproducible antidepressant effect was found, clinical use is limited by a variety of adverse effects. However, ketamine has become a standard tool for identifying the biological factors associated with rapid antidepressant action and, as such, is a novel target for the development of new therapeutics.


Neuropharmacology | 2009

The group III mGlu receptor agonist ACPT-I exerts anxiolytic-like but not antidepressant-like effects, mediated by the serotonergic and GABA-ergic systems

Katarzyna Stachowicz; Aleksandra Kłodzińska; Agnieszka Pałucha-Poniewiera; S. Schann; P. Neuville; Andrzej Pilc

Our earlier studies have demonstrated that (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid ACPT-I, a group III mGlu receptor agonist, produced anxiolytic-like and antidepressant-like actions after central administration. Here we describe the anxiolytic-like effects of ACPT-I after intraperitoneal administration in the stress-induced hyperthermia (SIH), elevated plus-maze (PMT) tests in mice and in the Vogel test in rats. However, the compound did not produce antidepressant-like effects in the tail suspension test (TST) or in the forced swim test (FST) in mice. The potential anxiolytic effect of ACPT-I (20 mg/kg) in the SIH test was inhibited by the benzodiazepine receptor antagonist flumazenil (given i.p., 10 mg/kg), and by a 5-HT(1A) receptor antagonist N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridynyl) cyclohexane-carboxamide (WAY100635) (0.1 mg/kg s.c.). At the same time, ritanserin (0.5 mg/kg i.p.), the 5-HT2A/C receptor antagonist, did not change the anxiolytic-like effects of ACPT-I. The results of these studies indicate that the GABA-ergic and serotonergic systems are involved in the potential anxiolytic action of ACPT-I.


Expert Opinion on Investigational Drugs | 2014

NMDA antagonists under investigation for the treatment of major depressive disorder

Bartłomiej Pochwat; Agnieszka Pałucha-Poniewiera; Bernadeta Szewczyk; Andrzej Pilc; Gabriel Nowak

Introduction: Mood disorders, including depression, are becoming increasingly prevalent in the developed world. Furthermore, treatment of depression therapeutics, mainly influencing the serotonergic and adrenergic systems, is considered insufficient. The original NMDA-glutamate hypothesis mechanism of antidepressant action was first proposed ∼ 20 years ago. Since then, a number of preclinical and clinical studies have examined its rationale. Areas covered: This review highlights the recent clinical evidence for the use of functional NMDA receptor antagonists as antidepressants. Furthermore, the authors present the mechanism(s) of antidepressant action derived mostly from preclinical paradigms. Expert opinion: Currently, clinical studies mostly use ketamine (a noncompetitive high-potency NMDA antagonist) as an agent for rapid relief of depressive symptoms. However, due to the ketamine-induced psychotomimetic effects, new NMDA receptor antagonists (modulators) are continuously being introduced for rapid antidepressant action, especially for use in treatment-resistant patients. Recent clinical reports for the use of CP-101,606, MK-0657 (selective GluN2B subunit NMDA receptor antagonists), GLYX-13 and d-cycloserine (glycine site partial agonists) are optimistic but await further support.


Neuropharmacology | 2014

Activation of the mTOR signaling pathway in the antidepressant-like activity of the mGlu5 antagonist MTEP and the mGlu7 agonist AMN082 in the FST in rats

Agnieszka Pałucha-Poniewiera; Bernadeta Szewczyk; Andrzej Pilc

Clinical studies have demonstrated rapid and long-lasting antidepressant effects of ketamine in depressive patients. It has been proposed that these effects are related to changes in synaptogenesis in the mechanism involving mammalian target of rapamycin (mTOR) activation. Similar mechanisms have been proposed for a group II metabotropic glutamate (mGlu) receptor antagonist, LY341495. We aimed to investigate whether other mGlu receptor ligands that produce antidepressant-like effects, namely, the mGlu5 antagonist MTEP and the mGlu7 agonist AMN082, induce the activation of mTOR signaling in the prefrontal cortex (PFC) in rats. AMN082 administered 60 min before the test increased the levels of pmTOR and pp70S6K, and the mTORC1 antagonist rapamycin reversed AMN082-induced changes in the forced swim test (FST) in rats. Furthermore, AMN082 administered 23 h before the decapitation of the rats increased the levels of synapsin I and GluR1, although it did not produce any effect in the FST at the same time point. However, MTEP induced a rapid but unsustained antidepressant-like effect, which was not related to the activation of the mTOR cascade. Finally, the antidepressant-like effects of MTEP or AMN082 were not antagonized by NBQX. In summary, the antidepressant-like activity of MTEP did not depend on the activation of mTOR signaling. However, we observed a unique feature of the mechanism of AMN082. The drug stimulated the mTOR signaling pathway and synaptic protein levels (like ketamine), while it did not induce a sustained antidepressant effect and its action was not directly dependent on AMPA receptor activation (as in classic antidepressants (ADs)).


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2012

Involvement of mGlu5 and NMDA receptors in the antidepressant-like effect of acamprosate in the tail suspension test.

Agnieszka Pałucha-Poniewiera; Andrzej Pilc

Accumulating evidence supports the hypothesis that modulation of glutamatergic system via NMDA receptors and mGlu5 receptors might be an effective antidepressant therapy. However, clinical application of NMDA and mGlu5 antagonists in the therapy of depression is still an open question. In the present study we investigated potential antidepressant-like effect of a functional NMDA and mGlu5 receptor antagonist, acamprosate, which has been used in the therapy of human alcoholics as an anti-craving drug for more than 20 years and is considered as a safe substance. We have found potential antidepressant-like effect of acamprosate at doses of 100-400 mg/kg in the TST in C57BL/6J mice. Furthermore we have shown that the antidepressant-like effect of acamprosate used at a dose of 200 mg/kg was dependent on NMDA and mGlu5 receptor blockade, since NMDA (25 mg/kg) and mGlu5 receptor positive allosteric modulator, CDPPB (3 mg/kg), antagonized its activity in the TST. These data suggest that acamprosate may induce antidepressant-like effect and that NMDA and mGlu5 receptors are crucial targets of acamprosate in this action.


Neuropharmacology | 2015

Activation of mTOR dependent signaling pathway is a necessary mechanism of antidepressant-like activity of zinc.

Bernadeta Szewczyk; Bartłomiej Pochwat; Anna Rafalo; Agnieszka Pałucha-Poniewiera; Helena Domin; Gabriel Nowak

The rapid antidepressant response to the N-methyl-D-aspartate (NMDA) receptor antagonists is mediated by activation of the mammalian target of the rapamycin (mTOR) signaling pathway, an increase in the synthesis of synaptic proteins and formation of new synapses in the prefrontal cortex (PFC) of rats. Zinc (Zn), which is a potent NMDA receptor antagonist, exerts antidepressant-like effects in screening tests and models of depression. We focused these studies in investigating whether activation of the mTOR signaling pathway is also a necessary mechanism of the antidepressant-like activity of Zn. We observed that a single injection of Zn (5 mg/kg) induced an increase in the phosphorylation of mTOR and p70S6K 30 min and 3 h after Zn treatment at time points when Zn produced also an antidepressant-like effect in the forced swim test (FST). Furthermore, Zn administered 3 h before the decapitation increased the level of brain derived neurotrophic factor (BDNF), GluA1 and synapsin I. An elevated level of GluA1 and synapsin I was still observed 24 h after the Zn treatment, although Zn did not produce any effects in the FST at that time point. We also observed that pretreatment with rapamycin (mTORC1 inhibitor), LY294002 (PI3K inhibitor), H-89 (PKA inhibitor) and GF109203X (PKC inhibitor) blocked the antidepressant-like effect of Zn in FST in rats and blocks Zn-induced activation of mTOR signaling proteins (analyzed 30 min after Zn administration). These studies indicated that the antidepressant-like activity of Zn depends on the activation of mTOR signaling and other signaling pathways related to neuroplasticity, which can indirectly modulate mTOR function.


Pharmacological Reports | 2013

Is the mGlu5 receptor a possible target for new antidepressant drugs

Agnieszka Pałucha-Poniewiera; Joanna M. Wierońska; Piotr Brański; Grzegorz Burnat; Barbara Chruścicka; Andrzej Pilc

The current treatment of depression, based on conventional antidepressant drugs that influence monoaminergic systems, is not satisfactory, and innovative antidepressant drugs are still needed. The next generation of treatments needs to be more effective, faster-acting and better tolerated than currently used antidepressants. A growing body of evidence indicates that compounds that modulate the glutamatergic system may be a group of novel and mechanistically distinct agents for the treatment of depression. Both preclinical and clinical data show strong, rapid and sustained effects of the NMDA receptor antagonist ketamine in treatment-resistant depression. However, ketamine cannot be considered as a novel antidepressant drug because of its side-effects and abuse potential. Because glutamatergic transmission is controlled not only by ionotropic but also by metabotropic glutamate receptors, their involvement in the etiology and the therapy of depression has also been postulated. Here, we review data supporting the potential antidepressant activity of mGlu5 receptor antagonists as well as the involvement of mGlu5 receptors in the pathophysiology of depression.

Collaboration


Dive into the Agnieszka Pałucha-Poniewiera's collaboration.

Top Co-Authors

Avatar

Andrzej Pilc

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Piotr Brański

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel Nowak

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grzegorz Burnat

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Karolina Podkowa

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Anna Sławińska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge