Agnieszka Z. Burzynska
Colorado State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agnieszka Z. Burzynska.
Biochimica et Biophysica Acta | 2012
David J. Madden; Ilana J. Bennett; Agnieszka Z. Burzynska; Guy G. Potter; Nan-kuei Chen; Allen W. Song
In this article we review recent research on diffusion tensor imaging (DTI) of white matter (WM) integrity and the implications for age-related differences in cognition. Neurobiological mechanisms defined from DTI analyses suggest that a primary dimension of age-related decline in WM is a decline in the structural integrity of myelin, particularly in brain regions that myelinate later developmentally. Research integrating behavioral measures with DTI indicates that WM integrity supports the communication among cortical networks, particularly those involving executive function, perceptual speed, and memory (i.e., fluid cognition). In the absence of significant disease, age shares a substantial portion of the variance associated with the relation between WM integrity and fluid cognition. Current data are consistent with one model in which age-related decline in WM integrity contributes to a decreased efficiency of communication among networks for fluid cognitive abilities. Neurocognitive disorders for which older adults are at risk, such as depression, further modulate the relation between WM and cognition, in ways that are not as yet entirely clear. Developments in DTI technology are providing a new insight into both the neurobiological mechanisms of aging WM and the potential contribution of DTI to understanding functional measures of brain activity. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.
Human Brain Mapping | 2012
Agnieszka Z. Burzynska; Irene E. Nagel; Claudia Preuschhof; Sebastian Gluth; Lars Bäckman; Shu-Chen Li; Ulman Lindenberger; Hauke R. Heekeren
Executive functions that are dependent upon the frontal‐parietal network decline considerably during the course of normal aging. To delineate neuroanatomical correlates of age‐related executive impairment, we investigated the relation between cortical thickness and executive functioning in 73 younger (20–32 years) and 56 older (60–71 years) healthy adults. Executive functioning was assessed using the Wisconsin Card Sorting Test (WCST). Cortical thickness was measured at each location of the cortical mantle using surface‐based segmentation procedures on high‐resolution T1‐weighted magnetic resonance images. For regions involved in WCST performance, such as the lateral prefrontal and parietal cortices, we found that thicker cortex was related to higher accuracy. Follow‐up ROI‐based analyses revealed that these associations were stronger in older than in younger adults. Moreover, among older adults, high and low performers differed in cortical thickness within regions generally linked to WCST performance. Our results indicate that the structural cortical correlates of executive functioning largely overlap with previously identified functional patterns. We conclude that structural preservation of relevant brain regions is associated with higher levels of executive performance in old age, and underscore the need to consider the heterogeneity of brain aging in relation to cognitive functioning. Hum Brain Mapp, 2011.
PLOS ONE | 2014
Agnieszka Z. Burzynska; Laura Chaddock-Heyman; Michelle W. Voss; Chelsea N. Wong; Neha P. Gothe; Erin A. Olson; Anya M. Knecht; Andrew Lewis; Jim M. Monti; Gillian E. Cooke; Thomas R. Wójcicki; Jason Fanning; Hyondo D. Chung; Elisabeth Awick; Edward McAuley; Arthur F. Kramer
Physical activity (PA) and cardiorespiratory fitness (CRF) are associated with better cognitive function in late life, but the neural correlates for these relationships are unclear. To study these correlates, we examined the association of both PA and CRF with measures of white matter (WM) integrity in 88 healthy low-fit adults (age 60–78). Using accelerometry, we objectively measured sedentary behavior, light PA, and moderate to vigorous PA (MV-PA) over a week. We showed that greater MV-PA was related to lower volume of WM lesions. The association between PA and WM microstructural integrity (measured with diffusion tensor imaging) was region-specific: light PA was related to temporal WM, while sedentary behavior was associated with lower integrity in the parahippocampal WM. Our findings highlight that engaging in PA of various intensity in parallel with avoiding sedentariness are important in maintaining WM health in older age, supporting public health recommendations that emphasize the importance of active lifestyle.
Cerebral Cortex | 2011
Agnieszka Z. Burzynska; Irene E. Nagel; Claudia Preuschhof; Shu-Chen Li; Ulman Lindenberger; Lars Bäckman; Hauke R. Heekeren
We investigated how the microstructure of relevant white matter connections is associated with cortical responsivity and working memory (WM) performance by collecting diffusion tensor imaging and verbal WM functional magnetic resonance imaging data from 29 young adults. We measured cortical responsivity within the frontoparietal WM network as the difference in blood oxygenation level-dependent (BOLD) signal between 3-back and 1-back conditions. Fractional anisotropy served as an index of the integrity of the superior longitudinal fasciculi (SLF), which connect frontal and posterior regions. We found that SLF integrity is associated with better 3-back performance and greater task-related BOLD responsivity. In addition, BOLD responsivity in right premotor cortex reliably mediated the effects of SLF integrity on 3-back performance but did not uniquely predict 3-back performance after controlling for individual differences in SLF integrity. Our results suggest that task-related adjustments of local gray matter processing are conditioned by the properties of anatomical connections between relevant cortical regions. We suggest that the microarchitecture of white matter tracts influences the speed of signal transduction along axons. This in turn may affect signal summation at neural dendrites, action potential firing, and the resulting BOLD signal change and responsivity.
NeuroImage | 2016
Michelle W. Voss; Timothy B. Weng; Agnieszka Z. Burzynska; Chelsea N. Wong; Gillian E. Cooke; Rachel Clark; Jason Fanning; Elizabeth A. Awick; Neha P. Gothe; Erin A. Olson; Edward McAuley; Arthur F. Kramer
Greater physical activity and cardiorespiratory fitness are associated with reduced age-related cognitive decline and lower risk for dementia. However, significant gaps remain in the understanding of how physical activity and fitness protect the brain from adverse effects of brain aging. The primary goal of the current study was to empirically evaluate the independent relationships between physical activity and fitness with functional brain health among healthy older adults, as measured by the functional connectivity of cognitively and clinically relevant resting state networks. To build context for fitness and physical activity associations in older adults, we first demonstrate that young adults have greater within-network functional connectivity across a broad range of cortical association networks. Based on these results and previous research, we predicted that individual differences in fitness and physical activity would be most strongly associated with functional integrity of the networks most sensitive to aging. Consistent with this prediction, and extending on previous research, we showed that cardiorespiratory fitness has a positive relationship with functional connectivity of several cortical networks associated with age-related decline, and effects were strongest in the default mode network (DMN). Furthermore, our results suggest that the positive association of fitness with brain function can occur independent of habitual physical activity. Overall, our findings provide further support that cardiorespiratory fitness is an important factor in moderating the adverse effects of aging on cognitively and clinically relevant functional brain networks.
The Journal of Neuroscience | 2013
Agnieszka Z. Burzynska; Douglas D. Garrett; Claudia Preuschhof; Irene E. Nagel; Shu-Chen Li; Lars Bäckman; Hauke R. Heekeren; Ulman Lindenberger
The comprehensive relations between healthy adult human brain white matter (WM) microstructure and gray matter (GM) function, and their joint relations to cognitive performance, remain poorly understood. We investigated these associations in 27 younger and 28 older healthy adults by linking diffusion tensor imaging (DTI) with functional magnetic resonance imaging (fMRI) data collected during an n-back working memory task. We present a novel application of multivariate Partial Least Squares (PLS) analysis that permitted the simultaneous modeling of relations between WM integrity values from all major WM tracts and patterns of condition-related BOLD signal across all GM regions. Our results indicate that greater microstructural integrity of the major WM tracts was negatively related to condition-related blood oxygenation level-dependent (BOLD) signal in task-positive GM regions. This negative relationship suggests that better quality of structural connections allows for more efficient use of task-related GM processing resources. Individuals with more intact WM further showed greater BOLD signal increases in typical “task-negative” regions during fixation, and notably exhibited a balanced magnitude of BOLD response across task-positive and -negative states. Structure—function relations also predicted task performance, including accuracy and speed of responding. Finally, structure–function–behavior relations reflected individual differences over and above chronological age. Our findings provide evidence for the role of WM microstructure as a scaffold for the context-relevant utilization of GM regions.
NeuroImage | 2016
Lauren E. Oberlin; Timothy D. Verstynen; Agnieszka Z. Burzynska; Michelle W. Voss; Ruchika Shaurya Prakash; Laura Chaddock-Heyman; Chelsea N. Wong; Jason Fanning; Elizabeth A. Awick; Neha P. Gothe; Siobhan M. Phillips; Emily L. Mailey; Diane K. Ehlers; Erin A. Olson; Thomas R. Wójcicki; Edward McAuley; Arthur F. Kramer; Kirk I. Erickson
White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the behavioral importance of higher levels of white matter microstructural organization with greater fitness levels remains a matter of speculation. Here we tested whether cardiorespiratory fitness (VO2max) levels were associated with white matter microstructure and whether this relationship constituted an indirect pathway between cardiorespiratory fitness and spatial working memory in two large, cognitively and neurologically healthy older adult samples. Diffusion tensor imaging was used to determine white matter microstructure in two separate groups: Experiment 1, N=113 (mean age=66.61) and Experiment 2, N=154 (mean age=65.66). Using a voxel-based regression approach, we found that higher VO2max was associated with higher fractional anisotropy (FA), a measure of white matter microstructure, in a diverse network of white matter tracts, including the anterior corona radiata, anterior internal capsule, fornix, cingulum, and corpus callosum (PFDR-corrected<.05). This effect was consistent across both samples even after controlling for age, gender, and education. Further, a statistical mediation analysis revealed that white matter microstructure within these regions, among others, constituted a significant indirect path between VO2max and spatial working memory performance. These results suggest that greater aerobic fitness levels are associated with higher levels of white matter microstructural organization, which may, in turn, preserve spatial memory performance in older adulthood.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Douglas D. Garrett; Irene E. Nagel; Claudia Preuschhof; Agnieszka Z. Burzynska; Janina Marchner; Steffen Wiegert; Gerhard Jan Jungehülsing; Lars Nyberg; Arno Villringer; Shu-Chen Li; Hauke R. Heekeren; Lars Bäckman; Ulman Lindenberger
Significance Younger, better performing adults typically show greater brain signal variability than older, poorer performers, but the mechanisms underlying this observation remain elusive. We attempt to restore deficient functional-MRI–based blood oxygen level-dependent (BOLD) signal variability (SDBOLD) levels in older adults by boosting dopamine via d-amphetamine (AMPH). Notably, older adults met or exceeded young adult SDBOLD levels under AMPH. AMPH-driven changes in SDBOLD also predicted AMPH-driven changes in reaction time speed and variability on a working memory task, but depended greatly on age and drug administration order. These findings (i) suggest that dopamine may account for adult age differences in brain signal variability and (ii) highlight the importance of considering practice effects and state dependencies when evaluating the neurochemical basis of age- and cognition-related brain dynamics. Better-performing younger adults typically express greater brain signal variability relative to older, poorer performers. Mechanisms for age and performance-graded differences in brain dynamics have, however, not yet been uncovered. Given the age-related decline of the dopamine (DA) system in normal cognitive aging, DA neuromodulation is one plausible mechanism. Hence, agents that boost systemic DA [such as d-amphetamine (AMPH)] may help to restore deficient signal variability levels. Furthermore, despite the standard practice of counterbalancing drug session order (AMPH first vs. placebo first), it remains understudied how AMPH may interact with practice effects, possibly influencing whether DA up-regulation is functional. We examined the effects of AMPH on functional-MRI–based blood oxygen level-dependent (BOLD) signal variability (SDBOLD) in younger and older adults during a working memory task (letter n-back). Older adults expressed lower brain signal variability at placebo, but met or exceeded young adult SDBOLD levels in the presence of AMPH. Drug session order greatly moderated change–change relations between AMPH-driven SDBOLD and reaction time means (RTmean) and SDs (RTSD). Older adults who received AMPH in the first session tended to improve in RTmean and RTSD when SDBOLD was boosted on AMPH, whereas younger and older adults who received AMPH in the second session showed either a performance improvement when SDBOLD decreased (for RTmean) or no effect at all (for RTSD). The present findings support the hypothesis that age differences in brain signal variability reflect aging-induced changes in dopaminergic neuromodulation. The observed interactions among AMPH, age, and session order highlight the state- and practice-dependent neurochemical basis of human brain dynamics.
Frontiers in Aging Neuroscience | 2017
Agnieszka Z. Burzynska; Yuqin Jiao; Anya M. Knecht; Jason Fanning; Elizabeth A. Awick; Tammy Chen; Neha P. Gothe; Michelle W. Voss; Edward McAuley; Arthur F. Kramer
Degeneration of cerebral white matter (WM), or structural disconnection, is one of the major neural mechanisms driving age-related decline in cognitive functions, such as processing speed. Past cross-sectional studies have demonstrated beneficial effects of greater cardiorespiratory fitness, physical activity, cognitive training, social engagement, and nutrition on cognitive functioning and brain health in aging. Here, we collected diffusion magnetic resonance (MRI) imaging data from 174 older (age 60–79) adults to study the effects of 6-months lifestyle interventions on WM integrity. Healthy but low-active participants were randomized into Dance, Walking, Walking + Nutrition, and Active Control (stretching and toning) intervention groups (NCT01472744 on ClinicalTrials.gov). Only in the fornix there was a time × intervention group interaction of change in WM integrity: integrity declined over 6 months in all groups but increased in the Dance group. Integrity in the fornix at baseline was associated with better processing speed, however, change in fornix integrity did not correlate with change in processing speed. Next, we observed a decline in WM integrity across the majority of brain regions in all participants, regardless of the intervention group. This suggests that the aging of the brain is detectable on the scale of 6-months, which highlights the urgency of finding effective interventions to slow down this process. Magnitude of WM decline increased with age and decline in prefrontal WM was of lesser magnitude in older adults spending less time sedentary and more engaging in moderate-to-vigorous physical activity. In addition, our findings support the anterior-to-posterior gradient of greater-to-lesser decline, but only in the in the corpus callosum. Together, our findings suggest that combining physical, cognitive, and social engagement (dance) may help maintain or improve WM health and more physically active lifestyle is associated with slower WM decline. This study emphasizes the importance of a physically active and socially engaging lifestyle among aging adults.
PLOS ONE | 2015
Agnieszka Z. Burzynska; Chelsea N. Wong; Michelle W. Voss; Gillian E. Cooke; Edward McAuley; Arthur F. Kramer
Decline in cognitive performance in old age is linked to both suboptimal neural processing in grey matter (GM) and reduced integrity of white matter (WM), but the whole-brain structure-function-cognition associations remain poorly understood. Here we apply a novel measure of GM processing–moment-to-moment variability in the blood oxygenation level-dependent signal (SDBOLD)—to study the associations between GM function during resting state, performance on four main cognitive domains (i.e., fluid intelligence, perceptual speed, episodic memory, vocabulary), and WM microstructural integrity in 91 healthy older adults (aged 60-80 years). We modeled the relations between whole-GM SDBOLD with cognitive performance using multivariate partial least squares analysis. We found that greater SDBOLD was associated with better fluid abilities and memory. Most of regions showing behaviorally relevant SDBOLD (e.g., precuneus and insula) were localized to inter- or intra-network “hubs” that connect and integrate segregated functional domains in the brain. Our results suggest that optimal dynamic range of neural processing in hub regions may support cognitive operations that specifically rely on the most flexible neural processing and complex cross-talk between different brain networks. Finally, we demonstrated that older adults with greater WM integrity in all major WM tracts had also greater SDBOLD and better performance on tests of memory and fluid abilities. We conclude that SDBOLD is a promising functional neural correlate of individual differences in cognition in healthy older adults and is supported by overall WM integrity.