Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agnieszka Zienkiewicz is active.

Publication


Featured researches published by Agnieszka Zienkiewicz.


Plant Physiology | 2015

Ectopic Expression of WRINKLED1 Affects Fatty Acid Homeostasis in Brachypodium distachyon Vegetative Tissues

Yang Yang; Jacob Munz; Cynthia L. Cass; Agnieszka Zienkiewicz; Que Kong; Wei Ma; Sanjaya; John C. Sedbrook; Christoph Benning

Unlike Arabidopsis, ectopic expression of the transcription factor WRINKLED1 involved in oil accumulation causes cell death in Brachypodium distachyon due to the distinct fatty acid metabolism of this grass. Triacylglycerol (TAG) is a storage lipid used for food purposes and as a renewable feedstock for biodiesel production. WRINKLED1 (WRI1) is a transcription factor that governs fatty acid (FA) synthesis and, indirectly, TAG accumulation in oil-storing plant tissues, and its ectopic expression has led to TAG accumulation in vegetative tissues of different dicotyledonous plants. The ectopic expression of BdWRI1 in the grass Brachypodium distachyon induced the transcription of predicted genes involved in glycolysis and FA biosynthesis, and TAG content was increased up to 32.5-fold in 8-week-old leaf blades. However, the ectopic expression of BdWRI1 also caused cell death in leaves, which has not been observed previously in dicotyledonous plants such as Arabidopsis (Arabidopsis thaliana). Lipid analysis indicated that the free FA content was 2-fold elevated in BdWRI1-expressing leaf blades of B. distachyon. The transcription of predicted genes involved in β-oxidation was induced. In addition, linoleic FA treatment caused cell death in B. distachyon leaf blades, an effect that was reversed by the addition of the FA biosynthesis inhibitor cerulenin. Taken together, ectopic expression of BdWRI1 in B. distachyon enhances FA biosynthesis and TAG accumulation in leaves, as expected, but also leads to increased free FA content, which has cytotoxic effects leading to cell death. Thus, while WRI appears to ubiquitously affect FA biosynthesis and TAG accumulation in diverse plants, its ectopic expression can lead to undesired side effects depending on the context of the specific lipid metabolism of the respective plant species.


Plant Journal | 2015

Transcriptional coordination of physiological responses in Nannochloropsis oceanica CCMP1779 under light/dark cycles

Eric Poliner; Nicholas Panchy; Linsey Newton; Guangxi Wu; Andrew Lapinsky; Blair Bullard; Agnieszka Zienkiewicz; Christoph Benning; Shin Han Shiu; Eva M. Farré

Nannochloropsis oceanica CCMP1779 is a marine unicellular stramenopile and an emerging reference species for basic research on oleogenic microalgae with biotechnological relevance. We investigated its physiology and transcriptome under light/dark cycles. We observed oscillations in lipid content and a predominance of cell division in the first half of the dark phase. Globally, more than 60% of the genes cycled in N.xa0oceanica CCMP1779, with gene expression peaking at different times of the day. Interestingly, the phase of expression of genes involved in certain biological processes was conserved across photosynthetic lineages. Furthermore, in agreement with our physiological studies we found the processes of lipid metabolism and cell division enriched in cycling genes. For example, there was tight coordination of genes involved in the lower part of glycolysis, fatty acid synthesis and lipid production at dawn preceding lipid accumulation during the day. Our results suggest that diel lipid storage plays a key role for N.xa0oceanica CCMP1779 growth under natural conditions making this alga a promising model to gain a basic mechanistic understanding of triacylglycerol production in photosynthetic cells. Our data will help the formulation of new hypotheses on the role of cyclic gene expression in cell growth and metabolism in Nannochloropsis.


Environmental Microbiology | 2017

Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens

Jessie K. Uehling; Andrii P. Gryganskyi; Khalid Hameed; Timothy J. Tschaplinski; Pawel K. Misztal; S. Wu; Alessandro Desirò; N. Vande Pol; Zhi-Yan Du; Agnieszka Zienkiewicz; Krzysztof Zienkiewicz; Emmanuelle Morin; Emilie Tisserant; Richard Splivallo; Matthieu Hainaut; Bernard Henrissat; Robin A. Ohm; Alan Kuo; Jia Yan; Anna Lipzen; Matt Nolan; Kurt LaButti; Kerrie Barry; Allen H. Goldstein; Jessy Labbé; Christopher W. Schadt; Gerald A. Tuskan; Igor V. Grigoriev; Francis Martin; Rytas Vilgalys

Endosymbiosis of bacteria by eukaryotes is a defining feature of cellular evolution. In addition to well-known bacterial origins for mitochondria and chloroplasts, multiple origins of bacterial endosymbiosis are known within the cells of diverse animals, plants and fungi. Early-diverging lineages of terrestrial fungi harbor endosymbiotic bacteria belonging to the Burkholderiaceae. We sequenced the metagenome of the soil-inhabiting fungus Mortierella elongata and assembled the complete circular chromosome of its endosymbiont, Mycoavidus cysteinexigens, which we place within a lineage of endofungal symbionts that are sister clade to Burkholderia. The genome of M. elongata strain AG77 features a core set of primary metabolic pathways for degradation of simple carbohydrates and lipid biosynthesis, while the M. cysteinexigens (AG77) genome is reduced in size and function. Experiments using antibiotics to cure the endobacterium from the host demonstrate that the fungal host metabolism is highly modulated by presence/absence of M. cysteinexigens. Independent comparative phylogenomic analyses of fungal and bacterial genomes are consistent with an ancient origin for M. elongata - M. cysteinexigens symbiosis, most likely over 350 million years ago and concomitant with the terrestrialization of Earth and diversification of land fungi and plants.


Biotechnology for Biofuels | 2017

Nannochloropsis, a rich source of diacylglycerol acyltransferases for engineering of triacylglycerol content in different hosts

Krzysztof Zienkiewicz; Agnieszka Zienkiewicz; Eric Poliner; Zhi-Yan Du; Katharina Vollheyde; Cornelia Herrfurth; Sofia Marmon; Eva M. Farré; Ivo Feussner; Christoph Benning

BackgroundPhotosynthetic microalgae are considered a viable and sustainable resource for biofuel feedstocks, because they can produce higher biomass per land area than plants and can be grown on non-arable land. Among many microalgae considered for biofuel production, Nannochloropsis oceanica (CCMP1779) is particularly promising, because following nutrient deprivation it produces very high amounts of triacylglycerols (TAG). The committed step in TAG synthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT). Remarkably, a total of 13 putative DGAT-encoding genes have been previously identified in CCMP1779 but most have not yet been studied in detail.ResultsBased on their expression profile, six out of 12 type-2 DGAT-encoding genes (NoDGTT1-NoDGTT6) were chosen for their possible role in TAG biosynthesis and the respective cDNAs were expressed in a TAG synthesis-deficient mutant of yeast. Yeast expressing NoDGTT5 accumulated TAG to the highest level. Over-expression of NoDGTT5 in CCMP1779 grown in N-replete medium resulted in levels of TAG normally observed only after N deprivation. Reduced growth rates accompanied NoDGTT5 over-expression in CCMP1779. Constitutive expression of NoDGTT5 in Arabidopsis thaliana was accompanied by increased TAG content in seeds and leaves. A broad substrate specificity for NoDGTT5 was revealed, with preference for unsaturated acyl groups. Furthermore, NoDGTT5 was able to successfully rescue the Arabidopsis tag1-1 mutant by restoring the TAG content in seeds.ConclusionsTaken together, our results identified NoDGTT5 as the most promising gene for the engineering of TAG synthesis in multiple hosts among the 13 DGAT-encoding genes of N. oceanica CCMP1779. Consequently, this study demonstrates the potential of NoDGTT5 as a tool for enhancing the energy density in biomass by increasing TAG content in transgenic crops used for biofuel production.


The Plant Cell | 2017

A plastid phosphatidylglycerol lipase contributes to the export of acyl groups from plastids for seed oil biosynthesis

Kun Wang; John E. Froehlich; Agnieszka Zienkiewicz; Hope Lynn Hersh; Christoph Benning

PLIP1, a plastid lipase specific for a unique chloroplast lipid, phosphatidylglycerol tagged with 16:1 trans fatty acid, is involved in acyl exchange and fatty acid export for seed oil biosynthesis. The lipid composition of thylakoid membranes inside chloroplasts is conserved from leaves to developing embryos. A finely tuned lipid assembly machinery is required to build these membranes during Arabidopsis thaliana development. Contrary to thylakoid lipid biosynthetic enzymes, the functions of most predicted chloroplast lipid-degrading enzymes remain to be elucidated. Here, we explore the biochemistry and physiological function of an Arabidopsis thylakoid membrane-associated lipase, PLASTID LIPASE1 (PLIP1). PLIP1 is a phospholipase A1. In vivo, PLIP1 hydrolyzes polyunsaturated acyl groups from a unique chloroplast-specific phosphatidylglycerol that contains 16:1Δ3trans as its second acyl group. Thus far, a specific function of this 16:1Δ3trans-containing phosphatidylglycerol in chloroplasts has remained elusive. The PLIP1 gene is highly expressed in seeds, and plip1 mutant seeds contain less oil and exhibit delayed germination compared with the wild type. Acyl groups released by PLIP1 are exported from the chloroplast, reincorporated into phosphatidylcholine, and ultimately enter seed triacylglycerol. Thus, 16:1Δ3trans uniquely labels a small but biochemically active plastid phosphatidylglycerol pool in developing Arabidopsis embryos, which is subject to PLIP1 activity, thereby contributing a small fraction of the polyunsaturated fatty acids present in seed oil. We propose that acyl exchange involving thylakoid lipids functions in acyl export from plastids and seed oil biosynthesis.


Science | 2017

Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins

Tea Lenarčič; Isabell Albert; Hannah Böhm; Vesna Hodnik; Katja Pirc; Apolonija Bedina Zavec; Marjetka Podobnik; David Pahovnik; Ema Žagar; Rory Pruitt; Peter Greimel; Akiko Yamaji-Hasegawa; Toshihide Kobayashi; Agnieszka Zienkiewicz; Jasmin Gömann; Jenny C. Mortimer; Lin Fang; Adiilah Mamode-Cassim; Magali Deleu; Laurence Lins; Claudia Oecking; Ivo Feussner; Sébastien Mongrand; Gregor Anderluh; Thorsten Nürnberger

An extra sugar protects Many microbial pathogens produce proteins that are toxic to the cells that they are targeting. Broad-leaved plants are susceptible to NLP (necrosis and ethylene-inducing peptide 1–like protein) toxins. Lenarčič et al. identified the receptors for NLP toxins to be GIPC (glycosylinositol phosphorylceramide) sphingolipids (see the Perspective by Van den Ackerveken). Their findings reveal why these toxins only attack broad-leaved plants (so-called eudicots): If the sphingolipid carries just two hexoses, as is the case for eudicots, the toxin binds and causes cell lysis. But in monocots with sphingolipids that have three hexoses, the toxin is ineffective. Science, this issue p. 1431; see also p. 1383 Plant sensitivity to a microbial cytotoxin is mediated through sugar head groups of an abundant plant sphingolipid. Necrosis and ethylene-inducing peptide 1–like (NLP) proteins constitute a superfamily of proteins produced by plant pathogenic bacteria, fungi, and oomycetes. Many NLPs are cytotoxins that facilitate microbial infection of eudicot, but not of monocot plants. Here, we report glycosylinositol phosphorylceramide (GIPC) sphingolipids as NLP toxin receptors. Plant mutants with altered GIPC composition were more resistant to NLP toxins. Binding studies and x-ray crystallography showed that NLPs form complexes with terminal monomeric hexose moieties of GIPCs that result in conformational changes within the toxin. Insensitivity to NLP cytolysins of monocot plants may be explained by the length of the GIPC head group and the architecture of the NLP sugar-binding site. We unveil early steps in NLP cytolysin action that determine plant clade-specific toxin selectivity.


The Plant Cell | 2018

Two Abscisic Acid-Responsive Plastid Lipase Genes Involved in Jasmonic Acid Biosynthesis in Arabidopsis thaliana

Kun Wang; Qiang Guo; John E. Froehlich; Hope Lynn Hersh; Agnieszka Zienkiewicz; Gregg A. Howe; Christoph Benning

Abscisic acid-inducible genes encode plastid lipases involved in releasing polyunsaturated fatty acids from chloroplast lipids as precursors for oxylipin production in Arabidopsis thaliana. Chloroplast membranes with their unique lipid composition are crucial for photosynthesis. Maintenance of the chloroplast membranes requires finely tuned lipid anabolic and catabolic reactions. Despite the presence of a large number of predicted lipid-degrading enzymes in the chloroplasts, their biological functions remain largely unknown. Recently, we described PLASTID LIPASE1 (PLIP1), a plastid phospholipase A1 that contributes to seed oil biosynthesis. The Arabidopsis thaliana genome encodes two putative PLIP1 paralogs, which we designated PLIP2 and PLIP3. PLIP2 and PLIP3 are also present in the chloroplasts, but likely with different subplastid locations. In vitro analysis indicated that both are glycerolipid A1 lipases. In vivo, PLIP2 prefers monogalactosyldiacylglycerol as substrate and PLIP3 phosphatidylglycerol. Overexpression of PLIP2 or PLIP3 severely reduced plant growth and led to accumulation of the bioactive form of jasmonate and related oxylipins. Genetically blocking jasmonate perception restored the growth of the PLIP2/3-overexpressing plants. The expression of PLIP2 and PLIP3, but not PLIP1, was induced by abscisic acid (ABA), and plip1 plip2 plip3 triple mutants exhibited compromised oxylipin biosynthesis in response to ABA. The plip triple mutants also showed hypersensitivity to ABA. We propose that PLIP2 and PLIP3 provide a mechanistic link between ABA-mediated abiotic stress responses and oxylipin signaling.


The Plant Cell | 2018

Galactoglycerolipid Lipase PGD1 Is Involved in Thylakoid Membrane Remodeling in Response to Adverse Environmental Conditions in Chlamydomonas

Zhi-Yan Du; Ben F. Lucker; Krzysztof Zienkiewicz; Tarryn E. Miller; Agnieszka Zienkiewicz; Barbara B. Sears; David M. Kramer; Christoph Benning

The Chlamydomonas lipase PGD1 plays important roles in thylakoid lipid remodeling, thylakoid architecture, and tolerance to adverse environments. Photosynthesis occurs in the thylakoid membrane, where the predominant lipid is monogalactosyldiacylglycerol (MGDG). As environmental conditions change, photosynthetic membranes have to adjust. In this study, we used a loss-of-function Chlamydomonas reinhardtii mutant deficient in the MGDG-specific lipase PGD1 (PLASTID GALACTOGLYCEROLIPID DEGRADATION1) to investigate the link between MGDG turnover, chloroplast ultrastructure, and the production of reactive oxygen species (ROS) in response to different adverse environmental conditions. The pgd1 mutant showed altered MGDG abundance and acyl composition and altered abundance of photosynthesis complexes, with an increased PSII/PSI ratio. Transmission electron microscopy showed hyperstacking of the thylakoid grana in the pgd1 mutant. The mutant also exhibited increased ROS production during N deprivation and high light exposure. Supplementation with bicarbonate or treatment with the photosynthetic electron transport blocker DCMU protected the cells against oxidative stress in the light and reverted chlorosis of pgd1 cells during N deprivation. Furthermore, exposure to stress conditions such as cold and high osmolarity induced the expression of PGD1, and loss of PGD1 in the mutant led to increased ROS production and inhibited cell growth. These findings suggest that PGD1 plays essential roles in maintaining appropriate thylakoid membrane composition and structure, thereby affecting growth and stress tolerance when cells are challenged under adverse conditions.


The Plant Cell | 2017

Co-evolution of Domain Interactions in the Chloroplast TGD1, 2, 3 Lipid Transfer Complex Specific to Brassicaceae and Poaceae Plants

Yang Yang; Agnieszka Zienkiewicz; Anastasiya Lavell; Christoph Benning

Differences in the chloroplast lipid importer subunits of Arabidopsis and Brachypodium, 16:3 and 18:3 plants, respectively, explain the unique phenotypes of the respective reduced function mutants. The import of lipids into the chloroplast is essential for photosynthetic membrane biogenesis. This process requires an ABC transporter in the inner envelope membrane with three subunits, TRIGALACTOSYLDIACYLGLYCEROL (TGD) 1, 2, and 3, named after the oligogalactolipids that accumulate in the respective Arabidopsis thaliana mutants. Unlike Arabidopsis, in the model grass Brachypodium distachyon, chloroplast lipid biosynthesis is largely dependent on imported precursors, resulting in a characteristic difference in chloroplast lipid acyl composition between the two plants. Accordingly, Arabidopsis is designated as a 16:3 (acyl carbons:double bounds) plant and Brachypodium as an 18:3 plant. Repression of TGD1 (BdTGD1) in Brachypodium affected growth without triggering oligogalactolipid biosynthesis. Moreover, expressing BdTGD1 in the Arabidopsis tgd1-1 mutant restored some phenotypes but did not reverse oligogalactolipid biosynthesis. A 27-amino acid loop (L45) is solely responsible for the incomplete functioning of BdTGD1 in Arabidopsis tgd1-1. Coevolutionary analysis and coimmunoprecipitation assays showed that the TGD1 L45 loop interacts with the mycobacterial cell entry domain of TGD2. To explain the observed differences in oligogalactolipid biosynthesis between the two species, we suggest that excess monogalactosyldiacylglycerol derived from chloroplast-derived precursors in Arabidopsis tgd1-1 is converted into oligogalactolipids, a process absent from Brachypodium with reduced TGD1 levels, which assembles monogalactosyldiacylglycerol exclusively from imported precursors.


Biotechnology for Biofuels | 2018

Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata

Zhi-Yan Du; Jonathan Alvaro; Brennan Hyden; Krzysztof Zienkiewicz; Nils Benning; Agnieszka Zienkiewicz; Gregory Bonito; Christoph Benning

BackgroundAlthough microalgal biofuels have potential advantages over conventional fossil fuels, high production costs limit their application in the market. We developed bio-flocculation and incubation methods for the marine alga, Nannochloropsis oceanica CCMP1779, and the oleaginous fungus, Mortierella elongata AG77, resulting in increased oil productivity.ResultsBy growing separately and then combining the cells, the M. elongata mycelium could efficiently capture N. oceanica due to an intricate cellular interaction between the two species leading to bio-flocculation. Use of a high-salt culture medium induced accumulation of triacylglycerol (TAG) and enhanced the contents of polyunsaturated fatty acids (PUFAs) including arachidonic acid and docosahexaenoic acid in M. elongata. To increase TAG productivity in the alga, we developed an effective, reduced nitrogen-supply regime based on ammonium in environmental photobioreactors. Under optimized conditions, N. oceanica produced high levels of TAG that could be indirectly monitored by following chlorophyll content. Combining N. oceanica and M. elongata to initiate bio-flocculation yielded high levels of TAG and total fatty acids, with ~u200915 and 22% of total dry weight (DW), respectively, as well as high levels of PUFAs. Genetic engineering of N. oceanica for higher TAG content in nutrient-replete medium was accomplished by overexpressing DGTT5, a gene encoding the type II acyl-CoA:diacylglycerol acyltransferase 5. Combined with bio-flocculation, this approach led to increased production of TAG under nutrient-replete conditions (~u200910% of DW) compared to the wild type (~u20096% of DW).ConclusionsThe combined use of M. elongata and N. oceanica with available genomes and genetic engineering tools for both species opens up new avenues to improve biofuel productivity and allows for the engineering of polyunsaturated fatty acids.

Collaboration


Dive into the Agnieszka Zienkiewicz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivo Feussner

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhi-Yan Du

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Eric Poliner

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Eva M. Farré

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Hope Lynn Hersh

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kun Wang

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Yang Yang

Great Lakes Bioenergy Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge