Agostina Puppo
Stazione Zoologica Anton Dohrn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agostina Puppo.
PLOS ONE | 2008
Agostina Puppo; Jong T. Chun; Giovanni Gragnaniello; Ezio Garante; Luigia Santella
Background When preparing for fertilization, oocytes undergo meiotic maturation during which structural changes occur in the endoplasmic reticulum (ER) that lead to a more efficient calcium response. During meiotic maturation and subsequent fertilization, the actin cytoskeleton also undergoes dramatic restructuring. We have recently observed that rearrangements of the actin cytoskeleton induced by actin-depolymerizing agents, or by actin-binding proteins, strongly modulate intracellular calcium (Ca2+) signals during the maturation process. However, the significance of the dynamic changes in F-actin within the fertilized egg has been largely unclear. Methodology/Principal Findings We have measured changes in intracellular Ca2+ signals and F-actin structures during fertilization. We also report the unexpected observation that the conventional antagonist of the InsP3 receptor, heparin, hyperpolymerizes the cortical actin cytoskeleton in postmeiotic eggs. Using heparin and other pharmacological agents that either hypo- or hyperpolymerize the cortical actin, we demonstrate that nearly all aspects of the fertilization process are profoundly affected by the dynamic restructuring of the egg cortical actin cytoskeleton. Conclusions/Significance Our findings identify important roles for subplasmalemmal actin fibers in the process of sperm-egg interaction and in the subsequent events related to fertilization: the generation of Ca2+ signals, sperm penetration, cortical granule exocytosis, and the block to polyspermy.
PLOS ONE | 2011
Marianthi Karali; Anna Manfredi; Agostina Puppo; Elena Marrocco; Annagiusi Gargiulo; Mariacarmela Allocca; Michele Della Corte; Settimio Rossi; Massimo Giunti; Maria Laura Bacci; Francesca Simonelli; Enrico Maria Surace; Sandro Banfi; Alberto Auricchio
Background Gene transfer using adeno-associated viral (AAV) vectors has been successfully applied in the retina for the treatment of inherited retinal dystrophies. Recently, microRNAs have been exploited to fine-tune transgene expression improving therapeutic outcomes. Here we evaluated the ability of retinal-expressed microRNAs to restrict AAV-mediated transgene expression to specific retinal cell types that represent the main targets of common inherited blinding conditions. Methodology/Principal Findings To this end, we generated AAV2/5 vectors expressing EGFP and containing four tandem copies of miR-124 or miR-204 complementary sequences in the 3′UTR of the transgene expression cassette. These vectors were administered subretinally to adult C57BL/6 mice and Large White pigs. Our results demonstrate that miR-124 and miR-204 target sequences can efficiently restrict AAV2/5-mediated transgene expression to retinal pigment epithelium and photoreceptors, respectively, in mice and pigs. Interestingly, transgene restriction was observed at low vector doses relevant to therapy. Conclusions We conclude that microRNA-mediated regulation of transgene expression can be applied in the retina to either restrict to a specific cell type the robust expression obtained using ubiquitous promoters or to provide an additional layer of gene expression regulation when using cell-specific promoters.
Developmental Biology | 2008
Keiichiro Kyozuka; Jong T. Chun; Agostina Puppo; Gianni Gragnaniello; Ezio Garante; Luigia Santella
Before successful fertilization can occur, oocytes must undergo meiotic maturation. In starfish, this can be achieved in vitro by applying 1-methyladenine (1-MA). The immediate response to 1-MA is the fast Ca2+ release in the cell cortex. Here, we show that this Ca2+ wave always initiates in the vegetal hemisphere and propagates through the cortex, which is the space immediately under the plasma membrane. We have observed that alteration of the cortical actin cytoskeleton by latrunculin-A and jasplakinolide can potently affect the Ca2+ waves triggered by 1-MA. This indicates that the cortical actin cytoskeleton modulates Ca2+ release during meiotic maturation. The Ca2+ wave was inhibited by the classical antagonists of the InsP(3)-linked Ca2+ signaling pathway, U73122 and heparin. To our surprise, however, these two inhibitors induced remarkable actin hyper-polymerization in the cell cortex, suggesting that their inhibitory effect on Ca2+ release may be attributed to the perturbation of the cortical actin cytoskeleton. In post-meiotic eggs, U73122 and jasplakinolide blocked the elevation of the vitelline layer by uncaged InsP(3), despite the massive release of Ca2+, implying that exocytosis of the cortical granules requires not only a Ca2+ rise, but also regulation of the cortical actin cytoskeleton. Our results suggest that the cortical actin cytoskeleton of starfish oocytes plays critical roles both in generating Ca2+ signals and in regulating cortical granule exocytosis.
Gene Therapy | 2014
Pasqualina Colella; Ivana Trapani; Giulia Cesi; Andrea Sommella; Anna Manfredi; Agostina Puppo; Carolina Iodice; Settimio Rossi; Francesca Simonelli; Massimo Giunti; Maria Laura Bacci; Alberto Auricchio
Gene therapy with adeno-associated viral (AAV) vectors is limited by AAV cargo capacity that prevents their application to the inherited retinal diseases (IRDs), such as Stargardt disease (STGD) or Usher syndrome type IB (USH1B), which are due to mutations in genes larger than 5 kb. Trans-splicing or hybrid dual AAV vectors have been successfully exploited to reconstitute large gene expression in the mouse retina. Here, we tested them in the large cone-enriched pig retina that closely mimics the human retina. We found that dual AAV trans-splicing and hybrid vectors transduce pig photoreceptors, the major cell targets for treatment of IRDs, to levels that were about two- to threefold lower than those obtained with a single AAV vector of normal size. This efficiency is significantly higher than that in mice, and is potentially due to the high levels of dual AAV co-transduction we observe in pigs. We also show that subretinal delivery in pigs of dual AAV trans-splicing and hybrid vectors successfully reconstitute, albeit at variable levels, the expression of the large genes ABCA4 and MYO7A mutated in STGD and USH1B, respectively. Our data support the potential of dual AAV vectors for large gene reconstitution in the cone-enriched pig retina that is a relevant preclinical model.
PLOS ONE | 2010
Jong T. Chun; Agostina Puppo; Filip Vasilev; Giovanni Gragnaniello; Ezio Garante; Luigia Santella
Background Fertilization of echinoderm eggs is accompanied by dynamic changes of the actin cytoskeleton and by a drastic increase of cytosolic Ca2+. Since the plasma membrane-enriched phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) serves as the precursor of inositol 1,4,5 trisphosphate (InsP3) and also regulates actin-binding proteins, PIP2 might be involved in these two processes. Methodology/Principal Findings In this report, we have studied the roles of PIP2 at fertilization of starfish eggs by using fluorescently tagged pleckstrin homology (PH) domain of PLC-δ1, which has specific binding affinity to PIP2, in combination with Ca2+ and F-actin imaging techniques and transmission electron microscopy. During fertilization, PIP2 increased at the plasma membrane in two phases rather than continually decreasing. The first increase was quickly followed by a decrease about 40 seconds after sperm-egg contact. However, these changes took place only after the Ca2+ wave had already initiated and propagated. The fertilized eggs then displayed a prolonged increase of PIP2 that was accompanied by the appearance of numerous spikes in the perivitelline space during the elevation of the fertilization envelope (FE). These spikes, protruding from the plasma membrane, were filled with microfilaments. Sequestration of PIP2 by RFP-PH at higher doses resulted in changes of subplasmalemmal actin networks which significantly delayed the intracellular Ca2+ signaling, impaired elevation of FE, and increased occurrences of polyspermic fertilization. Conclusions/Significance Our results suggest that PIP2 plays comprehensive roles in shaping Ca2+ waves and guiding structural and functional changes required for successful fertilization. We propose that the PIP2 increase and the subsequent formation of actin spikes not only provide the mechanical supports for the elevating FE, but also accommodate increased membrane surfaces during cortical granule exocytosis.
The International Journal of Developmental Biology | 2008
Luigia Santella; Agostina Puppo; Jong Tai Chun
Ca2+ is the most universal second messenger in cells from the very first moment of fertilization. In all animal species, fertilized eggs exhibit massive mobilization of intracellular Ca2+ to orchestrate the initial events of development. Echinoderm eggs have been an excellent model system for studying fertilization and the cell cycle due to their large size and abundance. In preparation for fertilization, the cell cycle-arrested oocytes must undergo meiotic maturation. Studies of starfish oocytes have shown that Ca2+ signaling is intimately involved in this process. Our knowledge of the molecular mechanism of meiotic maturation and fertilization has expanded greatly in the past two decades due to the discovery of cell cycle-related kinases and Ca2+-mobilizing second messengers. However, the molecular details of their actions await elucidation of other cellular elements that assist in the creation and transduction of Ca2+ signals. In this regard, the actin cytoskeleton, the receptors for second messengers and the Ca2+-binding proteins also require more attention. This article reviews the physiological significance and the mechanism of intracellular Ca2+ mobilization in starfish oocytes during maturation and fertilization.
Gene Therapy | 2014
Agostina Puppo; Giulia Cesi; Elena Marrocco; Pasquale Piccolo; Sarah Jacca; Dmitry M. Shayakhmetov; Robin J. Parks; Beverly L. Davidson; Stefano Colloca; Nicola Brunetti-Pierri; Philip Ng; Gaetano Donofrio; Alberto Auricchio
Retinal gene therapy with adeno-associated viral (AAV) vectors is safe and effective in humans. However, the limited cargo capacity of AAV prevents their use for therapy of those inherited retinopathies (IRs) due to mutations in large (>5 kb) genes. Viral vectors derived from adenovirus (Ad), lentivirus (LV) and herpes virus (HV) can package large DNA sequences, but do not target efficiently retinal photoreceptors (PRs) where the majority of genes responsible for IRs are expressed. Here, we have evaluated the mouse retinal transduction profiles of vectors derived from 16 different Ad serotypes, 7 LV pseudotypes and from a bovine HV. Most of the vectors tested transduced efficiently the retinal pigment epithelium. We found that LV-GP64 tends to transduce more PRs than the canonical LV-VSVG, albeit this was restricted to a narrow region. We observed more extensive PR transduction with HdAd1, 2 and 5/F35++ than with LV, although none of them outperformed the canonical HdAd5 or matched the extension of PR transduction achieved with AAV2/8.
PLOS ONE | 2009
Keiichiro Kyozuka; Jong T. Chun; Agostina Puppo; Gianni Gragnaniello; Ezio Garante; Luigia Santella
Background Starfish oocytes are arrested at the first prophase of meiosis until they are stimulated by 1-methyladenine (1-MA). The two most immediate responses to the maturation-inducing hormone are the quick release of intracellular Ca2+ and the accelerated changes of the actin cytoskeleton in the cortex. Compared with the later events of oocyte maturation such as germinal vesicle breakdown, the molecular mechanisms underlying the early events involving Ca2+ signaling and actin changes are poorly understood. Herein, we have studied the roles of G-proteins in the early stage of meiotic maturation. Methodology/Principal Findings By microinjecting starfish oocytes with nonhydrolyzable nucleotides that stabilize either active (GTPγS) or inactive (GDPβS) forms of G-proteins, we have demonstrated that: i) GTPγS induces Ca2+ release that mimics the effect of 1-MA; ii) GDPβS completely blocks 1-MA-induced Ca2+; iii) GDPβS has little effect on the amplitude of the Ca2+ peak, but significantly expedites the initial Ca2+ waves induced by InsP3 photoactivation, iv) GDPβS induces unexpectedly striking modification of the cortical actin networks, suggesting a link between the cytoskeletal change and the modulation of the Ca2+ release kinetics; v) alteration of cortical actin networks with jasplakinolide, GDPβS, or actinase E, all led to significant changes of 1-MA-induced Ca2+ signaling. Conclusions/Significance Taken together, these results indicate that G-proteins are implicated in the early events of meiotic maturation and support our previous proposal that the dynamic change of the actin cytoskeleton may play a regulatory role in modulating intracellular Ca2+ release.
PLOS ONE | 2013
Agostina Puppo; Alexander Bello; Anna Manfredi; Giulia Cesi; Elena Marrocco; Michele Della Corte; Settimio Rossi; Massimo Giunti; Maria Laura Bacci; Francesca Simonelli; Enrico Maria Surace; Gary P. Kobinger; Alberto Auricchio
Recombinant adeno-associated viral (AAV) vectors are known to safely and efficiently transduce the retina. Among the various AAV serotypes available, AAV2/5 and 2/8 are the most effective for gene transfer to photoreceptors (PR), which are the most relevant targets for gene therapy of inherited retinal degenerations. However, the search for novel AAV serotypes with improved PR transduction is ongoing. In this work we tested vectors derived from five AAV serotypes isolated from porcine tissues (referred to as porcine AAVs, four of which are newly identified) for their ability to transduce both the murine and the cone-enriched pig retina. Porcine AAV vectors expressing EGFP under the control of the CMV promoter were injected subretinally either in C57BL/6 mice or Large White pigs. The resulting retinal tropism was analyzed one month later on histological sections, while levels of PR transduction were assessed by Western blot. Our results show that all porcine AAV transduce murine and porcine retinal pigment epithelium and PR upon subretinal administration. AAV2/po1 and 2/po5 are the most efficient porcine AAVs for murine PR transduction and exhibit the strongest tropism for pig cone PR. The levels of PR transduction obtained with AAV2/po1 and 2/po5 are similar, albeit not superior, to those obtained with AAV2/5 and AAV2/8, which evinces AAV2/po1 and 2/po5 to be promising vectors for retinal gene therapy.
Applied Physics Letters | 2009
Giuseppe Pesce; Lara Selvaggi; Antonio Caporali; Anna Chiara De Luca; Agostina Puppo; Giulia Rusciano; Antonio Sasso
We have studied the mechanical properties of the cytoplasm of starfish oocytes before and after maturation using the multiple particle tracking technique. Fluorescent microbeads are microinjected in oocytes of Astropecten aranciacus starfishes. Mechanical properties are obtained analyzing the mean-square displacement (MSD) of the beads trajectories. The ensemble-averaged MSD provides information about diffusion coefficient D, and the cytoplasm viscosity η is estimated through the Stokes–Einstein equation. Results show that maturation is correlated with change of cytoplasm viscosity. The results can be ascribed to F-actin reorganization as also supported by fluorescence confocal microscopy.