Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agostinho Agra is active.

Publication


Featured researches published by Agostinho Agra.


Computers & Operations Research | 2013

The robust vehicle routing problem with time windows

Agostinho Agra; Marielle Christiansen; Rosa M. V. Figueiredo; Lars Magnus Hvattum; Michael Poss; Cristina Requejo

This paper addresses the robust vehicle routing problem with time windows. We are motivated by a problem that arises in maritime transportation where delays are frequent and should be taken into account. Our model only allows routes that are feasible for all values of the travel times in a predetermined uncertainty polytope, which yields a robust optimization problem. We propose two new formulations for the robust problem, each based on a different robust approach. The first formulation extends the well-known resource inequalities formulation by employing adjustable robust optimization. We propose two techniques, which, using the structure of the problem, allow to reduce significantly the number of extreme points of the uncertainty polytope. The second formulation generalizes a path inequalities formulation to the uncertain context. The uncertainty appears implicitly in this formulation, so that we develop a new cutting plane technique for robust combinatorial optimization problems with complicated constraints. In particular, efficient separation procedures are discussed. We compare the two formulations on a test bed composed of maritime transportation instances. These results show that the solution times are similar for both formulations while being significantly faster than the solutions times of a layered formulation recently proposed for the problem.


Networks | 2013

A maritime inventory routing problem: Discrete time formulations and valid inequalities

Agostinho Agra; Henrik Andersson; Marielle Christiansen; Laurence A. Wolsey

A single-product maritime inventory routing problem (MIRP) is studied in which the production and consumption rates vary over the planning horizon. The problem involves a heterogeneous fleet and multiple production and consumption ports with limited storage capacity. Two discrete time formulations are developed: an original model and a reformulated model that is a pure fixed charge network flow (FCNF) model with side constraints. Mixed integer sets arising from the decomposition of the formulations are identified. In particular, several lotsizing relaxations are derived for the formulations and used to establish valid inequalities to strengthen the proposed formulations. Until now, the derivation of models and valid inequalities for MIRPs has mainly been inspired by the developments in the routing community. Here, we have developed a newmodel leading to newvalid inequalities for MIRPs obtained by generalizing valid inequalities from the recent lot-sizing literature. Considering a set of instances based on real data, a computational study is conducted to test the formulations and the effectiveness of the valid inequalities. The FCNF formulation is generally much stronger than the original formulation. The developed valid inequalities reduce the integrality gap significantly for both formulations. By using a branch-and-bound scheme based on the strengthened FCNF formulation, most of our test instances are solved to optimality.


European Journal of Operational Research | 2014

Hybrid heuristics for a short sea inventory routing problem

Agostinho Agra; Marielle Christiansen; Alexandrino Delgado; Luidi Simonetti

We consider a short sea fuel oil distribution problem where an oil company is responsible for the routing and scheduling of ships between ports such that the demand for various fuel oil products is satisfied during the planning horizon. The inventory management has to be considered at the demand side only, and the consumption rates are given and assumed to be constant within the planning horizon. The objective is to determine distribution policies that minimize the routing and operating costs, while the inventory levels are maintained within their limits. We propose an arc-load flow formulation for the problem which is tightened with valid inequalities. In order to obtain good feasible solutions for planning horizons of several months, we compare different hybridization strategies. Computational results are reported for real small-size instances.


Computers & Operations Research | 2015

A maritime inventory routing problem with stochastic sailing and port times

Agostinho Agra; Marielle Christiansen; Alexandrino Delgado; Lars Magnus Hvattum

This paper describes a stochastic short sea shipping problem where a company is responsible for both the distribution of oil products between islands and the inventory management of those products at consumption storage tanks located at ports. In general, ship routing and scheduling is associated with uncertainty in weather conditions and unpredictable waiting times at ports. In this work, both sailing times and port times are considered to be stochastic parameters. A two-stage stochastic programming model with recourse is presented where the first stage consists of routing, loading and unloading decisions, and the second stage consists of scheduling and inventory decisions. The model is solved using a decomposition approach similar to an L-shaped algorithm where optimality cuts are added dynamically, and this solution process is embedded within the sample average approximation method. A computational study based on real-world instances is presented.


Discrete Optimization | 2006

Description of 2-integer continuous knapsack polyhedra

Agostinho Agra; Miguel Constantino

In this paper we discuss the polyhedral structure of several mixed integer sets involving two integer variables. We show that the number of the corresponding facet-defining inequalities is polynomial on the size of the input data and their coefficients can also be computed in polynomial time using a known algorithm [D. Hirschberg, C. Wong, A polynomial-time algorithm for the knapsack problem with two variables, Journal of the Association for Computing Machinery 23 (1) (1976) 147-154] for the two integer knapsack problem. These mixed integer sets may arise as substructures of more complex mixed integer sets that model the feasible solutions of real application problems. al application problems.


Mathematical Programming | 2007

Lifting two-integer knapsack inequalities

Agostinho Agra; Miguel Constantino

In this paper we discuss the derivation of strong valid inequalities for (mixed) integer knapsack sets based on lifting of valid inequalities for basic knapsack sets with two integer variables (and one continuous variable). The basic polyhedra can be described in polynomial time. We use superadditive valid lifting functions in order to obtain sequence independent lifting. Most of these superadditive functions and valid inequalities are not obtained in polynomial time.


ISCO'12 Proceedings of the Second international conference on Combinatorial Optimization | 2012

Layered formulation for the robust vehicle routing problem with time windows

Agostinho Agra; Marielle Christiansen; Rosa M. V. Figueiredo; Lars Magnus Hvattum; Michael Poss; Cristina Requejo

This paper studies the vehicle routing problem with time windows where travel times are uncertain and belong to a predetermined polytope. The objective of the problem is to find a set of routes that services all nodes of the graph and that are feasible for all values of the travel times in the uncertainty polytope. The problem is motivated by maritime transportation where delays are frequent and must be taken into account. We present an extended formulation for the vehicle routing problem with time windows that allows us to apply the classical (static) robust programming approach to the problem. The formulation is based on a layered representation of the graph, which enables to track the position of each arc in its route. We test our formulation on a test bed composed of maritime transportation instances.


European Journal of Operational Research | 2018

MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem

Agostinho Agra; Maryse Oliveira

In this paper we consider an integrated berth allocation and quay crane assignment and scheduling problem motivated by a real case where a heterogeneous set of cranes is considered. A first mathematical model based on the relative position formulation (RPF) for the berth allocation aspects is presented. Then, a new model is introduced to avoid the big-M constraints included in the RPF. This model results from a discretization of the time and space variables. For the new discretized model several enhancements, such as valid inequalities, are introduced. In order to derive good feasible solutions, a rolling horizon heuristic (RHH) is presented. A branch and cut approach that uses the enhanced discretized model and incorporates the upper bounds provided by the RHH solution is proposed. Computational tests are reported to show (i) the quality of the linear relaxation of the enhanced models; (ii) the effectiveness of the exact approach to solve to optimality a set of real instances; and (iii) the scalability of the RHH based on the enhanced mathematical model which is able to provide good feasible solutions for large size instances.


Siam Journal on Optimization | 2016

A dynamic programming approach for a class of robust optimization problems

Agostinho Agra; Marcio Costa Santos; Dritan Nace; Michael Poss

Common approaches to solve a robust optimization problem decompose the problem into a master problem (MP) and adversarial separation problems (APs). MP contains the original robust constraints, however written only for finite numbers of scenarios. Additional scenarios are generated on the fly by solving the APs. We consider in this work the budgeted uncertainty polytope from Bertsimas and Sim, widely used in the literature, and propose new dynamic programming algorithms to solve the APs that are based on the maximum number of deviations allowed and on the size of the deviations. Our algorithms can be applied to robust constraints that occur in various applications such as lot-sizing, TSP with time-windows, scheduling problems, and inventory routing problems, among many others. We show how the simple version of the algorithms leads to a FPTAS when the deterministic problem is convex. We assess numerically our approach on a lot-sizing problem, showing a comparison with the classical MIP reformulation of the AP.


international conference on computational logistics | 2016

A MIP Based Local Search Heuristic for a Stochastic Maritime Inventory Routing Problem

Agostinho Agra; Marielle Christiansen; Lars Magnus Hvattum; Filipe Rodrigues

We consider a single product maritime inventory routing problem in which the production and consumption rates are constant over the planning horizon. The problem involves a heterogeneous fleet of ships and multiple production and consumption ports with limited storage capacity. In spite of being one of the most common ways to transport goods, maritime transportation is characterized by high levels of uncertainty. The principal source of uncertainty is the weather conditions, since they have a great influence on sailing times. The travel time between any pair of ports is assumed to be random and to follow a log-logistic distribution. To deal with random sailing times we propose a two-stage stochastic programming problem with recourse. The routing, the order in which the ports are visited, as well as the quantities to load and unload are fixed before the uncertainty is revealed, while the time of the visit to ports and the inventory levels can be adjusted to the scenario. To solve the problem, a MIP based local search heuristic is developed. This new approach is compared with a decomposition algorithm in a computational study.

Collaboration


Dive into the Agostinho Agra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marielle Christiansen

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adelaide Cerveira

University of Trás-os-Montes and Alto Douro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Poss

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge