Agostinho Antunes
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agostinho Antunes.
Science | 2014
Guojie Zhang; Cai Li; Qiye Li; Bo Li; Denis M. Larkin; Chul Hee Lee; Jay F. Storz; Agostinho Antunes; Matthew J. Greenwold; Robert W. Meredith; Qi Zhou; Luohao Xu; Zongji Wang; Pei Zhang; Haofu Hu; Wei Yang; Jiang Hu; Jin Xiao; Zhikai Yang; Yang Liu; Qiaolin Xie; Hao Yu; Jinmin Lian; Ping Wen; Fang Zhang; Hui Li; Yongli Zeng; Zijun Xiong; Shiping Liu; Zhiyong Huang
Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.
BMC Genomics | 2008
Rute R. da Fonseca; Warren E. Johnson; Stephen J. O'Brien; Maria J. Ramos; Agostinho Antunes
BackgroundThe mitochondria produce up to 95% of a eukaryotic cells energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring the functional implications of observed variation in secondary and tertiary protein structures.ResultsWide variation in the properties of amino acids were observed at functionally important regions of cytochrome b in species with more-specialized metabolic requirements (such as adaptation to low energy diet or large body size, such as in elephant, dugong, sloth, and pangolin, and adaptation to unusual oxygen requirements, for example diving in cetaceans, flying in bats, and living at high altitudes in alpacas). Signatures of adaptive variation in the NADH dehydrogenase complex were restricted to the loop regions of the transmembrane units which likely function as protons pumps. Evidence of adaptive variation in the cytochrome c oxidase complex was observed mostly at the interface between the mitochondrial and nuclear-encoded subunits, perhaps evidence of co-evolution. The ATP8 subunit, which has an important role in the assembly of F0, exhibited the highest signal of adaptive variation. ATP6, which has an essential role in rotor performance, showed a high adaptive variation in predicted loop areas.ConclusionOur study provides insight into the adaptive evolution of the mtDNA genome in mammals and its implications for the molecular mechanism of oxidative phosphorylation. We present a framework for future experimental characterization of the impact of specific mutations in the function, physiology, and interactions of the mtDNA encoded proteins involved in oxidative phosphorylation.
Marine Drugs | 2012
Bárbara Frazão; Vitor Vasconcelos; Agostinho Antunes
The Cnidaria phylum includes organisms that are among the most venomous animals. The Anthozoa class includes sea anemones, hard corals, soft corals and sea pens. The composition of cnidarian venoms is not known in detail, but they appear to contain a variety of compounds. Currently around 250 of those compounds have been identified (peptides, proteins, enzymes and proteinase inhibitors) and non-proteinaceous substances (purines, quaternary ammonium compounds, biogenic amines and betaines), but very few genes encoding toxins were described and only a few related protein three-dimensional structures are available. Toxins are used for prey acquisition, but also to deter potential predators (with neurotoxicity and cardiotoxicity effects) and even to fight territorial disputes. Cnidaria toxins have been identified on the nematocysts located on the tentacles, acrorhagi and acontia, and in the mucous coat that covers the animal body. Sea anemone toxins comprise mainly proteins and peptides that are cytolytic or neurotoxic with its potency varying with the structure and site of action and are efficient in targeting different animals, such as insects, crustaceans and vertebrates. Sea anemones toxins include voltage-gated Na+ and K+ channels toxins, acid-sensing ion channel toxins, Cytolysins, toxins with Kunitz-type protease inhibitors activity and toxins with Phospholipase A2 activity. In this review we assessed the phylogentic relationships of sea anemone toxins, characterized such toxins, the genes encoding them and the toxins three-dimensional structures, further providing a state-of-the-art description of the procedures involved in the isolation and purification of bioactive toxins.
Nature Communications | 2014
Sébastien Dutertre; Ai-Hua Jin; Irina Vetter; Brett Hamilton; Kartik Sunagar; Vincent Lavergne; Valentin Dutertre; Bryan G. Fry; Agostinho Antunes; Deon J. Venter; Paul F. Alewood; Richard J. Lewis
Venomous animals are thought to inject the same combination of toxins for both predation and defence, presumably exploiting conserved target pharmacology across prey and predators. Remarkably, cone snails can rapidly switch between distinct venoms in response to predatory or defensive stimuli. Here, we show that the defence-evoked venom of Conus geographus contains high levels of paralytic toxins that potently block neuromuscular receptors, consistent with its lethal effects on humans. In contrast, C. geographus predation-evoked venom contains prey-specific toxins mostly inactive at human targets. Predation- and defence-evoked venoms originate from the distal and proximal regions of the venom duct, respectively, explaining how different stimuli can generate two distinct venoms. A specialized defensive envenomation strategy is widely evolved across worm, mollusk and fish-hunting cone snails. We propose that defensive toxins, originally evolved in ancestral worm-hunting cone snails to protect against cephalopod and fish predation, have been repurposed in predatory venoms to facilitate diversification to fish and mollusk diets.
Natural Product Reports | 2012
Pedro N. Leão; Niclas Engene; Agostinho Antunes; William H. Gerwick; Vitor Vasconcelos
This review covers the literature on the chemically mediated ecology of cyanobacteria, including ultraviolet radiation protection, feeding-deterrence, allelopathy, resource competition, and signalling. To highlight the chemical and biological diversity of this group of organisms, evolutionary and chemotaxonomical studies are presented. Several technologically relevant aspects of cyanobacterial chemical ecology are also discussed.
Molecular Ecology | 2000
Steven Weiss; Agostinho Antunes; Christian Schlötterer; Paulo Alexandrino
Mitochondrial haplotype diversity in seven Portuguese populations of brown trout, Salmo trutta L., was investigated by sequencing the 5′ end of the mitochondrial DNA (mtDNA) control region. Five new haplotypes were described for this species, each two to three mutational steps distant from the common north Atlantic haplotype. Significant population subdivision of mtDNA haplotypes was also apparent. Based on these results, as well as on published data describing the distribution of both mtDNA haplotypes and allozyme alleles throughout Europe, the postglacial recolonization of northern Europe was re‐evaluated. It is argued that the available data do not support the contribution of two major glacial refugia (southwest Atlantic and Ponto‐Caspian Basin) to this postglacial recolonization, as proposed in a recently published model. The unique genetic architecture of Portuguese brown trout within the Atlantic‐basin clade of this species represents a highly valuable genetic resource that should be protected from introgression with nonendemic strains of hatchery fish.
Toxins | 2013
Kartik Sunagar; Timothy N. W. Jackson; Eivind A. B. Undheim; Syed A. Ali; Agostinho Antunes; Bryan G. Fry
Three-finger toxins (3FTx) represent one of the most abundantly secreted and potently toxic components of colubrid (Colubridae), elapid (Elapidae) and psammophid (Psammophiinae subfamily of the Lamprophidae) snake venom arsenal. Despite their conserved structural similarity, they perform a diversity of biological functions. Although they are theorised to undergo adaptive evolution, the underlying diversification mechanisms remain elusive. Here, we report the molecular evolution of different 3FTx functional forms and show that positively selected point mutations have driven the rapid evolution and diversification of 3FTx. These diversification events not only correlate with the evolution of advanced venom delivery systems (VDS) in Caenophidia, but in particular the explosive diversification of the clade subsequent to the evolution of a high pressure, hollow-fanged VDS in elapids, highlighting the significant role of these toxins in the evolution of advanced snakes. We show that Type I, II and III α-neurotoxins have evolved with extreme rapidity under the influence of positive selection. We also show that novel Oxyuranus/Pseudonaja Type II forms lacking the apotypic loop-2 stabilising cysteine doublet characteristic of Type II forms are not phylogenetically basal in relation to other Type IIs as previously thought, but are the result of secondary loss of these apotypic cysteines on at least three separate occasions. Not all 3FTxs have evolved rapidly: κ-neurotoxins, which form non-covalently associated heterodimers, have experienced a relatively weaker influence of diversifying selection; while cytotoxic 3FTx, with their functional sites, dispersed over 40% of the molecular surface, have been extremely constrained by negative selection. We show that the a previous theory of 3FTx molecular evolution (termed ASSET) is evolutionarily implausible and cannot account for the considerable variation observed in very short segments of 3FTx. Instead, we propose a theory of Rapid Accumulation of Variations in Exposed Residues (RAVER) to illustrate the significance of point mutations, guided by focal mutagenesis and positive selection in the evolution and diversification of 3FTx.
Journal of Proteome Research | 2009
Guillermin Agüero-Chapin; Javier T. Varona-Santos; de la Riva Ga; Agostinho Antunes; González-Vlla T; Eugenio Uriarte; Humberto González-Díaz
Polygalacturonases (PGs) have called the attention of microbiology scientists and biotechnology or pharmaceutical industry because they are protein enzymes relevant to phytopathogens invasion, fruit ripening, and potential antimicrobial drug targets. Numeric Topological Indices (TIs) of protein pseudofolding lattices can be used as input for classification algorithms in Quantitative Structure-Activity Relationship (OSAR) studies. However, a comparative study of different OSAR models for PGs has not been reported. In this study, we calculated for the first time two classes of TIs (Spectral moments (pik) and Entropy (thetak) values) for the Markov matrices associated to pseudofolding lattices of 108 PGs and 100 non-PGs heterogeneous proteins. Afterward, we developed different linear classifiers based on Linear Discriminant Analysis (LDA) and four types of nonlinear Artificial Neural Networks (ANN). The pik-LDA model correctly classified 98.8% of PGs and 100% non-PGs used to train the model, as well as 98.1% of all sequences used as external validation series. The rk-LDA model was the more accurate and/or simpler found. In addition, we report for the first time the experimental isolation and successful prediction of a new PG sequence from Coffea arabica. This sequence was deposited in the GenBank by our group with accession number GDQ336394. The present type of models are an interesting alignment-free complement to alignment-based procedures.
Veterinary Immunology and Immunopathology | 2008
Jennifer L. Troyer; Sue VandeWoude; Jill Pecon-Slattery; Carl McIntosh; Sam Franklin; Agostinho Antunes; Warren E. Johnson; Stephen J. O'Brien
Abstract Feline and primate immunodeficiency viruses (FIVs, SIVs, and HIV) are transmitted via direct contact (e.g. fighting, sexual contact, and mother–offspring transmission). This dynamic likely poses a behavioral barrier to cross-species transmission in the wild. Recently, several host intracellular anti-viral proteins that contribute to species-specificity of primate lentiviruses have been identified revealing adaptive mechanisms that further limit spread of lentiviruses between species. Consistent with these inter-species transmission barriers, phylogenetic evidence supports the prediction that FIV transmission is an exceedingly rare event between free-ranging cat species, though it has occurred occasionally in captive settings. Recently we documented that puma and bobcats in Southern California share an FIV strain, providing an opportunity to evaluate evolution of both viral strains and host intracellular restriction proteins. These studies are facilitated by the availability of the 2× cat genome sequence annotation. In addition, concurrent viral and host genetic analyses have been used to track patterns of migration of the host species and barriers to transmission of the virus within the African lion. These studies illustrate the utility of FIV as a model to discover the variables necessary for establishment and control of lentiviral infections in new species.
Molecular & Cellular Proteomics | 2013
Andreas Brust; Kartik Sunagar; Eivind A. B. Undheim; Irina Vetter; Daryl C. Yang; Nicholas R. Casewell; Timothy N. W. Jackson; Ivan Koludarov; Paul F. Alewood; Wayne C. Hodgson; Richard J. Lewis; Glenn F. King; Agostinho Antunes; Iwan Hendrikx; Bryan G. Fry
Snake venom metalloproteases (SVMP) are composed of five domains: signal peptide, propeptide, metalloprotease, disintegrin, and cysteine-rich. Secreted toxins are typically combinatorial variations of the latter three domains. The SVMP-encoding genes of Psammophis mossambicus venom are unique in containing only the signal and propeptide domains. We show that the Psammophis SVMP propeptide evolves rapidly and is subject to a high degree of positive selection. Unlike Psammophis, some species of Echis express both the typical multidomain and the unusual monodomain (propeptide only) SVMP, with the result that a lower level of variation is exerted upon the latter. We showed that most mutations in the multidomain Echis SVMP occurred in the protease domain responsible for proteolytic and hemorrhagic activities. The cysteine-rich and disintegrin-like domains, which are putatively responsible for making the P-III SVMPs more potent than the P-I and P-II forms, accumulate the remaining variation. Thus, the binding sites on the molecules surface are evolving rapidly whereas the core remains relatively conserved. Bioassays conducted on two post-translationally cleaved novel proline-rich peptides from the P. mossambicus propeptide domain showed them to have been neofunctionalized for specific inhibition of mammalian a7 neuronal nicotinic acetylcholine receptors. We show that the proline rich postsynaptic specific neurotoxic peptides from Azemiops feae are the result of convergent evolution within the precursor region of the C-type natriuretic peptide instead of the SVMP. The results of this study reinforce the value of studying obscure venoms for biodiscovery of novel investigational ligands.