Agung Purnama
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agung Purnama.
Nature Reviews Cardiology | 2013
Dawit G. Seifu; Agung Purnama; Kibret Mequanint; Diego Mantovani
Vascular occlusion remains the leading cause of death in Western countries, despite advances made in balloon angioplasty and conventional surgical intervention. Vascular surgery, such as CABG surgery, arteriovenous shunts, and the treatment of congenital anomalies of the coronary artery and pulmonary tracts, requires biologically responsive vascular substitutes. Autografts, particularly saphenous vein and internal mammary artery, are the gold-standard grafts used to treat vascular occlusions. Prosthetic grafts have been developed as alternatives to autografts, but their low patency owing to short-term and intermediate-term thrombosis still limits their clinical application. Advances in vascular tissue engineering technology—such as self-assembling cell sheets, as well as scaffold-guided and decellularized-matrix approaches—promise to produce responsive, living conduits with properties similar to those of native tissue. Over the past decade, vascular tissue engineering has become one of the fastest-growing areas of research, and is now showing some success in the clinic.
Acta Biomaterialia | 2010
Maryam Moravej; Agung Purnama; M. Fiset; Jacques Couet; Diego Mantovani
In the search for a metallic material showing moderate and uniform degradation for application as degradable cardiovascular stents, electroformed iron (E-Fe) was evaluated by in vitro degradation and cell viability tests. Static immersion and dynamic degradation were used to evaluate degradation rate and mechanism, while cell viability assay was used to assess cytotoxicity. The results were compared with those of iron fabricated by casting and thermomechanical treatment previously investigated as a stent material. Electroformed iron showed faster degradation than iron fabricated by casting (0.25 vs. 0.14 mm year(-1)), with a uniform degradation mechanism. Cell viability results showed that E-Fe did not result in a decrease in metabolic activity when exposed to primary rat smooth muscle cells. However, it caused a decrease in cell proliferation activity which could be beneficial for the inhibition of in-stent restenosis.
Acta Biomaterialia | 2013
Agung Purnama; Hendra Hermawan; Serge Champetier; Diego Mantovani; Jacques Couet
Iron-based materials could constitute an interesting option for cardiovascular biodegradable stent applications due to their superior ductility compared to their counterparts - magnesium alloys. Since the predicted degradation rate of pure iron is considered slow, manganese (35% w/w), an alloying element for iron, was explored to counteract this problem through the powder metallurgy process (Fe-35 Mn). However, manganese presents a high cytotoxic potential; thus its effect on cells must first be established. Here, we established the gene expression profile of mouse 3T3 fibroblasts exposed to Fe-35 Mn degradation products in order to better understand cell response to potentially cytotoxic degradable metallic material (DMM). Mouse 3T3 cells were exposed to degradation products eluting through tissue culture insert filter (3 μm pore size) containing cytostatic amounts of 3.25 mg ml(-1) of Fe-35 Mn powder, 0.25 mg ml(-1) of pure Mn powder or 5 mg ml(-1) of pure iron powder for 24 h. We then conducted a gene expression profiling study from these cells. Exposure of 3T3 cells to Fe-35 Mn was associated with the up-regulation of 75 genes and down-regulation of 59 genes, while 126 were up-regulated and 76 down-regulated genes in the presence of manganese. No genes were found regulated for the iron powder. When comparing the GEP of 3T3 fibroblasts in the presence of Fe-35 Mn and Mn, 68 up-regulated and 54 down-regulated genes were common. These results were confirmed by quantitative RT-PCR for a subset of these genes. This GEP study could provide clues about the mechanism behind degradation products effects on cells of the Fe-35 Mn alloy and may help in the appraisal of its potential for DMM applications.
Acta Biomaterialia | 2010
Sidi Mohamed Derkaoui; Amélie Labbé; Agung Purnama; Virginie Gueguen; Christel Barbaud; Thierry Avramoglou; Didier Letourneur
We have synthesized new structures obtained from amphiphilic copolymers of dextran and polybutylmethacrylate with the aim of endothelialization of biomaterials. Grafting of butylmethacrylate onto dextran has been carried out using ceric ammonium nitrate as initiator. Three copolymers were obtained (11, 30 and 37 wt.% dextran) and homogeneous thin films were successfully prepared. In contrast to dextran, the resulting films were stable in water, and copolymers characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry and dynamic mechanical analysis showed evidence of hybrid properties between the parent homopolymers. Surfaces of films were smooth when analyzed by atomic force microscopy (roughness 2+/-1 nm) but greatly differed in their hydrophilicity by increasing the dextran content (water contact angle from 99 degrees to 57 degrees). In contrast to polybutylmethacrylate, where the proliferation of vascular smooth muscle cells (VSMCs) was excellent but that of endothelial cells was very low, the copolymer containing 11% of dextran was excellent for endothelial cells but very limited for VSMCs. An in vitro wound assay demonstrated that copolymer with 11% dextran is even more favorable for endothelial cell migration than tissue-culture polystyrene. Increasing the dextran content in the copolymers decreased the proliferation for both vascular cell types. Altogether, these results show that transparent and water-insoluble films made from copolymers of dextran and butylmethacrylate copolymers with an appropriate composition could enhance endothelial cell proliferation and migration. Therefore, a potential benefit of this approach is the availability of surfaces with tunable properties for the endothelialization of materials.
Acta Biomaterialia | 2013
Agung Purnama; Diego Mantovani; Jacques Couet
Iron-based materials could constitute an interesting option for cardiovascular biodegradable stent applications due to their appropriate ductility compared with their counterparts, magnesium alloys. However, the predicted degradation rate of pure iron is considered to be too slow for such applications. We explored manganese (35 wt.%) as an alloying element in combination with iron to circumvent this problem through powder metallurgical processing (Fe-35Mn). Manganese, on the other hand, is highly cytotoxic. We recently explored a new method to better characterize the safety of degradable metallic materials (DMMs) by establishing the gene expression profile (GEP) of cells (mouse 3T3 fibroblasts) exposed to Fe-35Mn degradation products in order to better understand their global response to a potentially cytotoxic DMM. We identified a number of up- and down-regulated genes and confirmed the regulation of a subset of them by quantitative real time polymerase chain reaction. Caveolin-1 (cav1), the structural protein of caveolae, small, smooth plasma membrane invaginations present in various differentiated cell types, was one of the most down-regulated genes in our GEPs. In the present study we further studied the potential of this 22 kDa protein to become a biomarker for cytotoxicity after exposure to degradable metallic elements. In order to better characterize cav1 expression in this context 3T3 mouse fibroblasts were exposed to either ferrous and manganese ions at cytostatic concentrations for 24 or 48 h. cav1 gene expression was not influenced by exposure to ferrous ions. On the other hand, exposure to manganese for 24h reduced cav1 gene expression by about 30% and by >65% after 48 h compared with control 3T3 cells. The cav1 cellular protein content was reduced to the same extent. The same pattern of expression of cav3 (the muscle-specific caveolin subtype) was also observed in this study. This strong and reproducible pattern of regulation of caveolins thus indicates potential as a biomarker for the toxicity of DMM elements.
Archive | 2016
Sulistioso Giat Sukaryo; Agung Purnama; Hendra Hermawan
Biomaterials are materials from which medical devices are made. Based on their chemical composition, they can be polymers, metals, ceramics or composites. Metals are still the most used biomaterials mostly due to their superior mechanical properties and can be found in orthopedic, cardiovascular and dental implants. However, many type of implants can only work properly when polymers or ceramics are also used in pair with metals such as in total knee or hip arthroplasties. Nowadays, biomaterials are no longer seen as inert substances supporting or replacing dysfunctional tissues or organs. They are now required to promote the healing process and self-disintegrate once the process is completed. All the efforts in searching ideal biomaterials are paid to improve the wellness and health of human beings. This chapter is intended to give a brief introduction to the structure and property of biomaterials.
Archive | 2015
Agung Purnama; Afghany Mostavan; Carlo Paternoster; Diego Mantovani
The first example of a documented electroforming process dates back to 1837 when a layer of electrodeposited copper was found on the surface of a printing plate. Since then, it became a basic manufacturing process to produce delicate metallic components such as nickel thin foils for solar panels, perforated screen-printing cylinders used for fabric and carpet printings, digital recording devices, etc. Recently, electroforming is used for the fabrication of iron-based materials designed for cardiovascular stents. Electroformed iron shows a higher corrosion rate in simulated biological environment; this behaviour is supposed to be influenced by its microstructure which is finer than that of iron produced with traditional techniques. A high corrosion rate can be beneficial for cardiovascular stent applications: a complete stent dissolution in 12–18 months can effectively prevent both late thrombosis and further treatment of paediatric patients, usually requiring a continuous vessel remodelling. Faster corrosion rate of iron-based material is advantageous for cardiovascular stent application in order to avoid late stent thrombosis and arterial growth mismatch in young patients leading to a secondary revascularization procedure. Electroformed iron has mechanical properties comparable to those of stainless steel (stent reference metal) with the advantage of the total dissolution of the material after the accomplishment of its function: for this reason, this metal can be considered as a valid alternative to magnesium-based materials. Nevertheless, electroforming is influenced by parameters such as electrolyte bath composition, current density, pH, temperature, additives, cathode, etc. that have a significant effect on the structure of the produced materials.
Acta Biomaterialia | 2010
Hendra Hermawan; Agung Purnama; D. Dubé; Jacques Couet; Diego Mantovani
Acta Biomaterialia | 2010
Agung Purnama; Hendra Hermawan; Jacques Couet; Diego Mantovani
Drug Delivery and Translational Research | 2015
Agung Purnama; Rachida Aid-Launais; Oualid Haddad; Muriel Maire; Diego Mantovani; Didier Letourneur; Hanna Hlawaty; Catherine Le Visage