Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agung Tri Wijayanta is active.

Publication


Featured researches published by Agung Tri Wijayanta.


Bioresource Technology | 2012

Optimized combustion of biomass volatiles by varying O2 and CO2 levels: A numerical simulation using a highly detailed soot formation reaction mechanism

Agung Tri Wijayanta; Md. Saiful Alam; Koichi Nakaso; Jun Fukai; Masakata Shimizu

To increase syngas production and minimize soot, polycyclic aromatic hydrocarbon (PAH), and CO(2) emissions resulting from biomass combustion, the evolution of biomass volatiles during O(2)/CO(2) gasification was simulated. A highly detailed soot formation reaction mechanism flowing through the reactor, involving 276 species, 2158 conventional gas phase reactions and 1635 surface phase reactions, was modeled as a plug flow reactor (PFR). The reaction temperature and pressure were varied in the range 1073-1873K and 0.1-2MPa. The effect of temperature on product concentration was more emphasized than that of pressure. The effect of O(2)/CO(2) input on product concentration was investigated. O(2) concentration was important in reducing PAHs at low temperature. Below 1473K, an increase in the O(2) concentration decreased PAH and soot production. However, if the target of CO(2) concentration was higher than 0.22 in mass fraction terms, temperatures above 1473K reduced PAHs and increased CO.


Journal of Magnetics | 2015

Dependence of Structural and Magnetic Properties on Annealing Times in Co-precipitated Cobalt Ferrite Nanoparticles

Budi Purnama; Rafika Rahmawati; Agung Tri Wijayanta; Suharyana

Modifications in the structural and magnetic properties of co-precipitated cobalt ferrite nanoparticles can be accomplished by varying the annealing time periods during the synthetic process. Experimental results show that high-purity cobalt ferrite nanoparticles are obtained using a co-precipitation process. The dependence of the crystallite sizes on the annealing time was successfully demonstrated using XRD and SEM. Finally, vibrating sample magnetometer analyses show that the magnetic properties of the cobalt ferrite nanoparticles depend on their relative particle sizes.


SUSTAINABLE ENERGY AND ADVANCED MATERIALS : Proceeding of the 4th International Conference and Exhibition on Sustainable Energy and Advanced Materials 2015 (ICE-SEAM 2015) | 2016

Experimental study of heat transfer enhancement in a concentric double pipe heat exchanger with different axial pitch ratio of perforated twisted tape inserts

Indri Yaningsih; Tri Istanto; Agung Tri Wijayanta

In this study, an experimental investigation has been carried out for heat transfer and pressure drop characteristics of a concentric double pipe heat exchanger using the perforated twisted (PT) tape inserts with various axial pitch ratios. The experiments were performed using PT tape inserts with tape-twist ratio of 3.97 and the three axial pitch ratio (Sx/W = 0.56, 0.87 and 1.19) and constant the perforation hole diameter ratio (d/W = 0.16). In the experiments, hot water and cold water flowed through the inner pipe and annulus, respectively. The experiments were performed for counter current flow mode of the fluids in a turbulent flow regime with Reynolds number ranging from 5400 to 17,500. A tube with typical twisted (TT) tape insert and a plain tube were also tested for comparison. The experimental results revealed that both heat transfer rate and friction factor of the heat exchanger equipped with PT tape inserts were significantly higher than those of the plain tube and with TT tape insert. The resu...


PROCEEDINGS OF THE 3RD AUN/SEED-NET REGIONAL CONFERENCE ON ENERGY ENGINEERING AND THE 7TH INTERNATIONAL CONFERENCE ON THERMOFLUIDS (RCEnE/THERMOFLUID 2015) | 2016

Experimental study of heat transfer enhancement in solar air heater with different angle of attack of V-down continuous ribs

Tri Istanto; Dominicus Danardono; Indri Yaningsih; Agung Tri Wijayanta

In this paper, an experimental study on the effect of angle attack in V-down continuous ribs on heat transfer and friction factor in an artificially roughened air heater duct is presented. The electric heater with a constant heat flux as a simulation of the indoor testing solar air heater is used to heat the roughened part of rectangular duct while other parts were insulated. The system and operating conditions were used to decide the range of parameters for the study. The ratio of the width to height of the duct (W/H) was 12, the relative roughness pitch (p/e) was 10, the relative roughness height (e/Dh) was 0.033 and the angle of attack of flow (α) was 30-80°. The air flow rate corresponded to Reynolds number between 3500 –10,000. The result of heat transfer and friction factor had been compared to those for smooth duct under similar flow and thermal boundary condition. The thermo-hydraulic performance also had been considered. As a result, the maximum enhancement of Nusselt number (Nu) and friction fac...


Combustion Theory and Modelling | 2010

A reduced mechanism for primary reactions of coal volatiles in a plug flow reactor

Saiful Alam; Agung Tri Wijayanta; Koichi Nakaso; Jun Fukai; Koyo Norinaga; Jun-ichiro Hayashi

In the present paper, the authors study the primary reactions of coal volatiles and a detailed mechanism has been made for three different environments: thermal decomposition (pyrolysis), partial oxidation (O2) and O2/CO2 gasification in a plug flow reactor to analyze the combustion component. The computed results have similar trend for three different environments with the experimental data. A systematically reduced mechanism for O2/CO2 gasification has also been derived by examination of Rate of Production (ROP) analysis from the detailed mechanism (255 species and 1095 reactions). The reduced mechanism shows similar result and has been validated by comparing the calculated concentrations of H2, CH4, H2O, CO, CO2 and polycyclic aromatic hydrocarbon (PAH) with those of the detailed mechanism in a wide range of operating conditions. The authors also predicted the concentration profiles of H2, CO, CO2 and PAH at high temperature and high pressure.


INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE AND NANOTECHNOLOGY 2016 (ICESNANO 2016) | 2017

Concentric tube heat exchanger installed by twisted tapes using various wings with alternate axes

Indri Yaningsih; Agung Tri Wijayanta

The effects of twisted tapes using various wings with alternate axes on heat transfer, flow friction and thermal performance characteristics in a concentric tube heat exchanger are experimentally investigated. The influence of wing shape including triangle, rectangle and trapezoid are also studied. The experiments are performed using twisted tape with the constant wing-chord ratio (d/W) of 0.31, constant wing-span ratio (b/W) of 0.23 and constant twist ratio (y/W) of 3.8, over a Reynolds number range of 5800–18,500. The alternate axes are made by arranging each plane of twisted tape to 60-degree difference about the adjacent plane. The tests using the plain tube and tube with typical twisted tape were also conducted for a comparison. The results show that both heat transfer rate and friction factor associated with all twisted tape are consistently higher than those without twisted tape. Under the similar operating conditions, Nusselt number, friction factor as well as thermal performance factor given by t...


international conference industrial mechanical electrical and chemical engineering | 2018

V-cut twisted tape insert effect on heat transfer enhancement of single phase turbulent flow heat exchanger

Indri Yaningsih; Agung Tri Wijayanta; Takahiko Miyazaki; Shigeru Koyama

Turbulator is recognized as a method to increase the performance of the heat exchanger. Turbulator in the form of V-cut twisted tape insert could help to increase the performance by enhancing the coefficient of the heat transfer. This paper proposes a new design of V-cut twisted tape insert (VTT) with different width ratio (w/W), which investigated on the heat transfer enhancement, in the form of Nusselt number (Nu) and friction factor (f) characteristics. Three different width ratios (w/W) 0.32; 0.38 and 0.48 are introduced in this experiment. The working fluid is the hot water in the inner tube and cold water in the annulus, the flow direction is counter-flow. The temperature inlet of hot water is kept constant at 60°C while the flow rate is in the range of Reynolds number 5400 - 17,350. The heat exchanger without insertion (plain tube) and typical twisted tape insert (TT) are examined for comparison. Results indicate that the proposed VTT increases the heat transfer, friction factor, and thermal performance of the heat exchanger. Under the similar condition, VTT provides the best performance in comparison with TT and plain tube. Decreasing width ratio (w/W) increases the heat transfer and thermal performance. However, when the heat transfer is increased, the friction factor is also increasing. The results also revealed that the use of the VTT and TT, the increase in the heat transfer and friction factor up to 97% and 3.48 times of the plain tube. The highest thermal performance is 1.4.Turbulator is recognized as a method to increase the performance of the heat exchanger. Turbulator in the form of V-cut twisted tape insert could help to increase the performance by enhancing the coefficient of the heat transfer. This paper proposes a new design of V-cut twisted tape insert (VTT) with different width ratio (w/W), which investigated on the heat transfer enhancement, in the form of Nusselt number (Nu) and friction factor (f) characteristics. Three different width ratios (w/W) 0.32; 0.38 and 0.48 are introduced in this experiment. The working fluid is the hot water in the inner tube and cold water in the annulus, the flow direction is counter-flow. The temperature inlet of hot water is kept constant at 60°C while the flow rate is in the range of Reynolds number 5400 - 17,350. The heat exchanger without insertion (plain tube) and typical twisted tape insert (TT) are examined for comparison. Results indicate that the proposed VTT increases the heat transfer, friction factor, and thermal perfor...


international conference industrial mechanical electrical and chemical engineering | 2018

High yield hydrolysis of seaweed-waste biomass using peracetic acid and ionic liquid treatments

Uju; Agung Tri Wijayanta; Masahiro Goto; Noriho Kamiya

Seaweed is one of the most promising bioethanol feedstocks. This water plant has high carbohydrate content but low lignin content, as a result it will be easier to be hydrolysed. This paper described hydrolysis of seaweed-waste biomass from the carrageenan (SWBC) industry using enzymatic saccharification or ionic liquids-HCl hydrolysis. In the first work, SWBC pretreated by peracetic acid (PAA) followed by ionic liquid (IL) caused enhance the cellulose conversion of enzymatic saccharification. At 48h saccharification, the value conversion almost reached 100%. In addition, the untreated SWBC also produced the cellulose conversion 77%. In the second work, SWBC or Bagasse with or without pretreated by PAA was hydrolyzed using ILs-HCl hydrolysis. The ILs used were 1-buthyl-3-methylpyridium chloride, [Bmpy][Cl] and 1-butyl-3-metyl imidazolium chloride ([Bmim][Cl]). [Bmpy][Cl]-HCl hydrolysis produced higher cellulose conversion than [Bmim][Cl]-HCl hydrolysis. The phenomenon was clearly observed on the Bagasse, ...


international conference industrial mechanical electrical and chemical engineering | 2018

Influence of minimum quantity lubrication with Al2O3 nanoparticles on cutting parameters in drilling process

Sofia Fitrina; Budi Kristiawan; Eko Surojo; Agung Tri Wijayanta; Takahiko Miyazaki; Shigeru Koyama

Machining is one of the largest and most widely used methods of production segments in industries. In this way, cutting fluids play an important role in minimizing production time, cost, and energy in various machining operations. This paper presents an experimental investigation into minimum quantity lubrication (MQL) with Al2O3 nanoparticles in drilling process of common rail as work material with DPSCM 435H code to analyze its influence on cutting parameters. Al2O3 has been selected for nanoparticles in this study due to its non-toxicity and spherical shapes for enhanced tribological attributes. Experiments were carried out for two different conditions; MQL + nanofluids (250 ml/h) and conventional cutting fluid (15 liters/min). In this work, nanofluid was prepared by adding Al2O3 nanoparticles (13 nm size) into the conventional cutting fluid in the specific proportion of 1.2 vol.%. The experiment results reveal that the performance of Al2O3 nanofluid in term surface roughness is better compared to the ...


international conference industrial mechanical electrical and chemical engineering | 2018

Potential ability of zeolite to generate high-temperature vapor using waste heat

Jun Fukai; Agung Tri Wijayanta

In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20–80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated ...

Collaboration


Dive into the Agung Tri Wijayanta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Budi Purnama

Sebelas Maret University

View shared research outputs
Top Co-Authors

Avatar

Suharyana

Sebelas Maret University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge