Agustin Zsögön
Universidade Federal de Viçosa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agustin Zsögön.
Plant Science | 2017
Agustin Zsögön; Tomas Cermak; Daniel F. Voytas; Lázaro Eustáquio Pereira Peres
The ideotype is a theoretical model of an archetypal cultivated plant. Recent progress in genome editing is aiding the pursuit of this ideal in crop breeding. Breeding is relatively straightforward when the traits in question are monogenic in nature and show Mendelian inheritance. Conversely, traits with a diffuse, polygenic basis such as abiotic stress resistance are more difficult to harness. In recent years, many genes have been identified that are important for plant domestication and act by increasing yield, grain or fruit size or altering plant architecture. Here, we propose that (a) key monogenic traits whose physiology has been unveiled can be molecularly tailored to achieve the ideotype; and (b) wild relatives of crops harboring polygenic stress resistance genes or other traits of interest could be de novo domesticated by manipulating monogenic yield-related traits through state-of-the-art gene editing techniques. An overview of the genomic and physiological challenges in the worlds main staple crops is provided. We focus on tomato and its wild Solanum (section Lycopersicon) relatives as a suitable model for molecular design in the pursuit of the ideotype for elite cultivars and to test de novo domestication of wild relatives.
Journal of Experimental Botany | 2016
Adriano Nunes-Nesi; Vitor de Laia Nascimento; Franklin Magnum de Oliveira Silva; Agustin Zsögön; Wagner L. Araújo; Ronan Sulpice
The rates of increase in yield of the main commercial crops have been steadily falling in many areas worldwide. This generates concerns because there is a growing demand for plant biomass due to the increasing population. Plant yield should thus be improved in the context of climate change and decreasing natural resources. It is a major challenge which could be tackled by improving and/or altering light-use efficiency, CO2 uptake and fixation, primary metabolism, plant architecture and leaf morphology, and developmental plant processes. In this review, we discuss some of the traits which could lead to yield increase, with a focus on how natural genetic variation could be harnessed. Moreover, we provide insights for advancing our understanding of the molecular aspects governing plant growth and yield, and propose future avenues for improvement of crop yield. We also suggest that knowledge accumulated over the last decade in the field of molecular physiology should be integrated into new ideotypes.
Plant and Soil | 2018
Ricardo P. Ribeiro; Lucas Cavalcante da Costa; Eduardo F. Medina; Wagner L. Araújo; Agustin Zsögön; Dimas Mendes Ribeiro
AimsStylosanthes humilis is known to exhibit high persistence in acid soils, however, how low soil pH controls seed germination as well as root and hypocotyl growth remains unknown. This study was carried out to evaluate the hormonal and metabolic alterations induced by low soil pH on seed germination behavior of S. humilis.MethodsSeeds of S. humilis were sown in acid soil samples or sand soaked in buffer solution with pH ranging from 4.0 to 7.0. Concentrations of indole-3-acetic acid, ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), primary metabolite profile and final seed germination were evaluated after four days.ResultsLow soil pH led to increased final seed germination, concomitantly with higher root penetration into the soil as well as higher ACC and ethylene production by seedlings. Treatment with the ethylene biosynthesis inhibitor L-α-(2-aminoethoxyvinyl)-glycine (AVG) greatly reduced final seed germination under acidic conditions. Final seed germination of seeds treated with AVG was increased by exogenous ethylene application in a dose-dependent manner. Furthermore, low soil pH promoted distinct changes in IAA concentrations, and in carbon and nitrogen metabolism in hypocotyl and roots.ConclusionsLow soil pH increases the final germination of S. humilis seeds through alterations in ethylene metabolism, allowing root penetration into the soil.
Plant Science | 2017
Eloisa Vendemiatti; Agustin Zsögön; Geraldo Felipe Ferreira e Silva; Frederico Almeida de Jesus; Lucas Cutri; Cassia Regina Fernandes Figueiredo; Francisco André Ossamu Tanaka; Fabio Tebaldi Silveira Nogueira; Lázaro Eustáquio Pereira Peres
Glandular trichomes are structures with widespread distribution and deep ecological significance. In the Solanum genus, type-IV glandular trichomes provide resistance to insect pests. The occurrence of these structures is, however, poorly described and controversial in cultivated tomato (Solanum lycopersicum). Optical and scanning electron microscopy were used to screen a series of well-known commercial tomato cultivars, revealing the presence of type-IV trichomes on embryonic (cotyledons) and juvenile leaves. A tomato line overexpressing the microRNA miR156, known to promote heterochronic development, and mutants affecting KNOX and CLAVATA3 genes possessed type-IV trichomes in adult leaves. A re-analysis of the Woolly (Wo) mutant, previously described as enhancing glandular trichome density, showed that this effect only occurs at the juvenile phase of vegetative development. Our results suggest the existence of at least two levels of regulation of multicellular trichome formation in tomato: one enhancing different types of trichomes, such as that controlled by the WOOLLY gene, and another dependent on developmental stage, which is fundamental for type-IV trichome formation. Their combined manipulation could represent an avenue for biotechnological engineering of trichome development in plants.
F1000Research | 2017
Douglas J. Orr; Auderlan de Macena Pereira; Paula da Fonseca Pereira; Ítalo A. Pereira-Lima; Agustin Zsögön; Wagner L. Araújo
Photosynthesis is the basis of primary productivity on the planet. Crop breeding has sustained steady improvements in yield to keep pace with population growth increases. Yet these advances have not resulted from improving the photosynthetic process per se but rather of altering the way carbon is partitioned within the plant. Mounting evidence suggests that the rate at which crop yields can be boosted by traditional plant breeding approaches is wavering, and they may reach a “yield ceiling” in the foreseeable future. Further increases in yield will likely depend on the targeted manipulation of plant metabolism. Improving photosynthesis poses one such route, with simulations indicating it could have a significant transformative influence on enhancing crop productivity. Here, we summarize recent advances of alternative approaches for the manipulation and enhancement of photosynthesis and their possible application for crop improvement.
Plant Physiology | 2018
Willian Batista Silva; Mateus H. Vicente; Jessenia M. Robledo; Diego S. Reartes; Renata C Ferrari; Ricardo Ernesto Bianchetti; Wagner L. Araújo; Luciano Freschi; Lázaro Eustáquio Pereira Peres; Agustin Zsögön
The antiflorigenic signal SELF-PRUNING controls tomato growth habit by affecting auxin transport, signaling, and metabolism. The SELF PRUNING (SP) gene is a key regulator of growth habit in tomato (Solanum lycopersicum). It is an ortholog of TERMINAL FLOWER1, a phosphatidylethanolamine-binding protein with antiflorigenic activity in Arabidopsis (Arabidopsis thaliana). A spontaneous loss-of-function mutation (sp) has been bred into several industrial tomato cultivars, as it produces a suite of pleiotropic effects that are favorable for mechanical harvesting, including determinate growth habit, short plant stature, and simultaneous fruit ripening. However, the physiological basis for these phenotypic differences has not been thoroughly explained. Here, we show that the sp mutation alters polar auxin transport as well as auxin responses, such as gravitropic curvature and elongation of excised hypocotyl segments. We also demonstrate that free auxin levels and auxin-regulated gene expression patterns are altered in sp mutants. Furthermore, diageotropica, a mutation in a gene encoding a cyclophilin A protein, appears to confer epistatic effects with sp. Our results indicate that SP affects the tomato growth habit at least in part by influencing auxin transport and responsiveness. These findings suggest potential novel targets that could be manipulated for controlling plant growth habit and improving productivity.
bioRxiv | 2018
Willian Batista Silva; Mateus H. Vicente; Jessenia R Moncaleano; Diego S Reartes; Renata C Ferrari; Ricardo Ernesto Bianchetti; Wagner L. Araújo; Luciano Freschi; Lázaro Ep Peres; Agustin Zsögön
Summary The antiflorigenic signal SELF-PRUNING, which controls growth habit, exerts its effects through auxin transport, signaling and metabolism in tomato. Abstract The SELF PRUNING (SP) gene is a key regulator of growth habit in tomato (Solanum lycopersicum). It is an ortholog of TERMINAL FLOWER 1, a phosphatidyl-ethanolamine binding protein with anti-florigenic activity in Arabidopsis thaliana. A spontaneous loss-of-function sp mutation has been bred into a large number of industrial tomato cultivars, as it produces a suite of pleiotropic effects that are favorable for mechanical harvesting, including determinate growth habit, short plant stature and simultaneous fruit ripening. However, the physiological basis for these phenotypic differences has not been thoroughly explained. Here, we show that the sp mutation alters polar auxin transport as well as auxin responses such gravitropic curvature and elongation of excised hypocotyl segments. We further demonstrate that free auxin levels and auxin-regulated gene expression patterns are altered in sp, with epistatic effects of diageotropica, a mutation in a cyclophilin A protein-encoding gene. Our results indicate that SP impacts growth habit in tomato, at least in part, via changes in auxin transport and responsiveness. These findings hint at novel targets that could be manipulated in the control of growth habit and productivity.
Plant Signaling & Behavior | 2018
Fred A.L. Brito; Lucas Cavalcante da Costa; Karla Gasparini; Thaline M. Pimenta; Wagner L. Araújo; Agustin Zsögön; Dimas Mendes Ribeiro
ABSTRACT The tropical forage legume Stylosanthes humilis is naturally distributed in the acidic soils of the tropics. However, data concerning the role of low soil pH in the control of S. humilis seed germination remains limited. Recently, we have demonstrated that acidic soil triggers increased ethylene production during germination of S. humilis seeds, concomitantly with higher root penetration into the soil. Our finding points an important role of low soil pH as a signal allowing penetration of root in the soil through interaction with the ethylene signalling pathway. Herein, we discuss how low soil pH induces changes on seed hormonal physiology.
Plant Physiology and Biochemistry | 2018
Nilo Cesar Queiroga Silva; Genaina Aparecida de Souza; Thaline M. Pimenta; Fred A.L. Brito; Edgard Augusto de Toledo Picoli; Agustin Zsögön; Dimas Mendes Ribeiro
In Stylosanthes humilis, salt stress tolerance is associated with ethylene production by the seeds, however, how salt stress controls seed germination and ethylene production is poorly understood. Here, we studied the hormonal and metabolic changes triggered by salt stress on germination of S. humilis seeds. Salt stress led to decreased seed germination and ethylene production, concomitantly with higher abscisic acid (ABA) production by seeds. Treatment with NaCl and ABA promoted distinct changes in energy metabolism, allowing seeds to adapt to salt stress conditions. Treatment with the ABA biosynthesis inhibitor fluridone or ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) reversed the effects of salt stress on seed germination and ethylene production. Moreover, ethylene concentration was decreased by increasing the pH of the salt solution. High pH, however, did not influence concentration of ABA in seeds under salt stress. We conclude that biosynthesis of ABA and ethylene in response to salt stress constitutes a point of convergence that provides flexibility to regulate energy metabolism and embryo growth potential of S. humilis seeds within a given pH condition.
Plant Cell and Environment | 2018
Willian Batista-Silva; David B. Medeiros; Acácio Rodrigues-Salvador; Danilo M. Daloso; Rebeca Patricia Omena-Garcia; Franciele Santos Oliveira; Lilian Ellen Pino; Lázaro Eustáquio Pereira Peres; Adriano Nunes-Nesi; Alisdair R. Fernie; Agustin Zsögön; Wagner L. Araújo
Auxin modulates a range of plant developmental processes including embryogenesis, organogenesis, and shoot and root development. Recent studies have shown that plant hormones also strongly influence metabolic networks, which results in altered growth phenotypes. Modulating auxin signalling pathways may therefore provide an opportunity to alter crop performance. Here, we performed a detailed physiological and metabolic characterization of tomato (Solanum lycopersicum) mutants with either increased (entire) or reduced (diageotropica-dgt) auxin signalling to investigate the consequences of altered auxin signalling on photosynthesis, water use, and primary metabolism. We show that reduced auxin sensitivity in dgt led to anatomical and physiological modifications, including altered stomatal distribution along the leaf blade and reduced stomatal conductance, resulting in clear reductions in both photosynthesis and water loss in detached leaves. By contrast, plants with higher auxin sensitivity (entire) increased the photosynthetic capacity, as deduced by higher Vcmax and Jmax coupled with reduced stomatal limitation. Remarkably, our results demonstrate that auxin-sensitive mutants (dgt) are characterized by impairments in the usage of starch that led to lower growth, most likely associated with decreased respiration. Collectively, our findings suggest that mutations in different components of the auxin signalling pathway specifically modulate photosynthetic and respiratory processes.
Collaboration
Dive into the Agustin Zsögön's collaboration.
Lázaro Eustáquio Pereira Peres
Escola Superior de Agricultura Luiz de Queiroz
View shared research outputs