Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahamed A. Khalyfa is active.

Publication


Featured researches published by Ahamed A. Khalyfa.


Antioxidants & Redox Signaling | 2012

Cognitive Function in Prepubertal Children with Obstructive Sleep Apnea: A Modifying Role for NADPH Oxidase p22 Subunit Gene Polymorphisms?

David Gozal; Abdelnaby Khalyfa; Oscar Sans Capdevila; Leila Kheirandish-Gozal; Ahamed A. Khalyfa; Jinkwan Kim

Pediatric obstructive sleep apnea (OSA) may lead to neurocognitive dysfunction, but not in everyone affected. The frequencies of NADPH oxidase (NOX) polymorphisms in the p22phox subunit were similar between children with OSA and controls, except for rs6520785 and rs4673, the latter being significantly more frequent among the OSA children without deficits than with deficits (p<0.02). Similarly, 8-hydroxydeoxyguanine urine levels and NOX activity were lower among children without cognitive deficits and particularly among those with the rs4673 polymorphism. Thus, polymorphisms within the NOX gene or its functional subunits may account for important components of the variance in cognitive function deficits associated with OSA in children.


Scientific Reports | 2016

Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice.

Valeriy Poroyko; Alba Carreras; Abdelnaby Khalyfa; Ahamed A. Khalyfa; Vanessa Leone; Eduard Peris; Isaac Almendros; Alex Gileles-Hillel; Zhuanhong Qiao; Nathaniel Hubert; Ramon Farré; Eugene B. Chang; David Gozal

Chronic sleep fragmentation (SF) commonly occurs in human populations, and although it does not involve circadian shifts or sleep deprivation, it markedly alters feeding behaviors ultimately promoting obesity and insulin resistance. These symptoms are known to be related to the host gut microbiota. Mice were exposed to SF for 4 weeks and then allowed to recover for 2 weeks. Taxonomic profiles of fecal microbiota were obtained prospectively, and conventionalization experiments were performed in germ-free mice. Adipose tissue insulin sensitivity and inflammation, as well as circulating measures of inflammation, were assayed. Effect of fecal water on colonic epithelial permeability was also examined. Chronic SF-induced increased food intake and reversible gut microbiota changes characterized by the preferential growth of highly fermentative members of Lachnospiraceae and Ruminococcaceae and a decrease of Lactobacillaceae families. These lead to systemic and visceral white adipose tissue inflammation in addition to altered insulin sensitivity in mice, most likely via enhanced colonic epithelium barrier disruption. Conventionalization of germ-free mice with SF-derived microbiota confirmed these findings. Thus, SF-induced metabolic alterations may be mediated, in part, by concurrent changes in gut microbiota, thereby opening the way for gut microbiome-targeted therapeutics aimed at reducing the major end-organ morbidities of chronic SF.


Diabetes | 2014

Sleep Fragmentation During Late Gestation Induces Metabolic Perturbations and Epigenetic Changes in Adiponectin Gene Expression in Male Adult Offspring Mice

Abdelnaby Khalyfa; Vesco Mutskov; Alba Carreras; Ahamed A. Khalyfa; Fahed Hakim; David Gozal

Sleep fragmentation (SF) is a common condition among pregnant women, particularly during late gestation. Gestational perturbations promote the emergence of adiposity and metabolic disease risk in offspring, most likely through epigenetic modifications. Adiponectin (AdipoQ) expression inversely correlates with obesity and insulin resistance. The effects of SF during late gestation on metabolic function and AdipoQ expression in visceral white adipose tissue (VWAT) of offspring mice are unknown. Male offspring mice were assessed at 24 weeks after dams were exposed to SF or control sleep during late gestation. Increased food intake, body weight, VWAT mass, and insulin resistance, with reductions in AdipoQ expression in VWAT, emerged in SF offspring. Increased DNMT3a and -b and global DNA methylation and reduced histone acetyltransferase activity and TET1, -2, and -3 expression were detected in VWAT of SF offspring. Reductions in 5-hydroxymethylcytosine and H3K4m3 and an increase in DNA 5-methylcytosine and H3K9m2 in the promoter and enhancer regions of AdipoQ emerged in adipocytes from VWAT and correlated with AdipoQ expression. SF during late gestation induces epigenetic modifications in AdipoQ in male offspring mouse VWAT adipocytes along with a metabolic syndrome–like phenotype. Thus, altered gestational environments elicited by SF impose the emergence of adverse, long-lasting metabolic consequences in the next generation.


Sleep | 2016

Effect on Intermittent Hypoxia on Plasma Exosomal Micro RNA Signature and Endothelial Function in Healthy Adults.

Abdelnaby Khalyfa; Chunling Zhang; Ahamed A. Khalyfa; Glen E. Foster; Andrew E. Beaudin; Jorge Andrade; Patrick J. Hanly; Marc J. Poulin; David Gozal

STUDY OBJECTIVE Intermittent hypoxia (IH) is associated with increased risk of cardiovascular disease. Exosomes are secreted by most cell types and released in biological fluids, including plasma, and play a role in modifying the functional phenotype of target cells. Using an experimental human model of IH, we investigated potential exosome-derived biomarkers of IH-induced vascular dysfunction. METHODS Ten male volunteers were exposed to room air (D0), IH (6 h/day) for 4 days (D4) and allowed to recover for 4 days (D8). Circulating plasma exosomes were isolated and incubated with human endothelial monolayer cultures for impedance measurements and RNA extracted and processed with messenger RNA (mRNA) arrays to identify gene targets. In addition, immunofluorescent assessments of endothelial nitric oxide synthase (eNOS) mRNA expression, ICAM-1 cellular distribution were conducted. RESULTS Plasma exosomal micro RNAs (miRNAs) were profiled. D4 exosomes, primarily from endothelial sources, disrupted impedance levels compared to D0 and D8. ICAM-1 expression was markedly upregulated in endothelial cells exposed to D4 exosomes along with significant reductions in eNOS expression. Microarray approaches identified a restricted and further validated signature of exosomal miRNAs in D4 exosomes, and mRNA arrays revealed putative endothelial gene target pathways. CONCLUSIONS In humans, intermittent hypoxia alters exosome cargo in the circulation which promotes increased permeability and dysfunction of endothelial cells in vitro. A select number of circulating exosomal miRNAs may play important roles in the cardiovascular dysfunction associated with OSA by targeting specific effector pathways.


Chest | 2016

Circulating microRNAs as Potential Biomarkers of Endothelial Dysfunction in Obese Children.

Abdelnaby Khalyfa; Leila Kheirandish-Gozal; Rakesh Bhattacharjee; Ahamed A. Khalyfa; David Gozal

BACKGROUND Cardiovascular disease (CVD) is a complex disease with multifactorial etiology. The presence of endothelial dysfunction constitutes an early risk factor for CVD in children. Circulating microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression and represent a novel class of biomarkers and therapeutic targets; therefore, we examined whether the presence of endothelial dysfunction is associated with differential expression of plasma miRNAs in otherwise healthy children. METHODS A total of 70 children (aged 5-10 years) were recruited and classified into two groups (normal endothelial function [NEF] and endothelial dysfunction). Time to peak postocclusive reperfusion (Tmax) was considered as the indicator of either normal endothelial function (NEF; Tmax < 45 s) or endothelial dysfunction (Tmax ≥ 45 s). Lipid profiles, high-sensitivity C-reactive protein, fasting glucose, and insulin were assayed using enzyme-linked immunosorbent assay. miRNAs isolated from plasma were assayed with a custom human CVD array, followed by quantitative polymerase chain reaction verification of candidates. In addition, bioinformatics approaches including combinatorial target prediction algorithms and gene ontology were applied. RESULTS Three miRNAs that have been previously linked to cardiomyopathy, hsa-miR-125a-5p, hsa-miR-342-3p, and hsa-miR-365b-3p, were identified as potential biomarkers of children with endothelial dysfunction. The miRNA predicted gene targets revealed 31 common targets among all three putative candidate biomarker miRNAs and encompass three biologic pathways, including transforming growth factor-β signaling, cytokine-cytokine receptor interactions, and activin receptor-like kinase in cardiac myocytes. CONCLUSIONS Plasma miRNAs may be useful as potential screening tools for the presence of endothelial dysfunction in children and may reveal endothelial dysfunction-relevant target genes.


BMC Medical Genomics | 2013

Polymorphisms in nitric oxide synthase and endothelin genes among children with obstructive sleep apnea

Siriporn Chatsuriyawong; David Gozal; Leila Kheirandish-Gozal; Rakesh Bhattacharjee; Ahamed A. Khalyfa; Yang Wang; Wasana Sukhumsirichart; Abdelnaby Khalyfa

BackgroundObstructive sleep apnea (OSA) is associated with adverse and interdependent cognitive and cardiovascular consequences. Increasing evidence suggests that nitric oxide synthase (NOS) and endothelin family (EDN) genes underlie mechanistic aspects of OSA-associated morbidities. We aimed to identify single nucleotide polymorphisms (SNPs) in the NOS family (3 isoforms), and EDN family (3 isoforms) to identify potential associations of these SNPs in children with OSA.MethodsA pediatric community cohort (ages 5–10 years) enriched for snoring underwent overnight polysomnographic (NPSG) and a fasting morning blood draw. The diagnostic criteria for OSA were an obstructive apnea-hypopnea Index (AHI) >2/h total sleep time (TST), snoring during the night, and a nadir oxyhemoglobin saturation <92%. Control children were defined as non-snoring children with AHI <2/h TST (NOSA). Endothelial function was assessed using a modified post-occlusive hyperemic test. The time to peak reperfusion (Tmax) was considered as the indicator for normal endothelial function (NEF; Tmax<45 sec), or ED (Tmax≥45 sec). Genomic DNA from peripheral blood was extracted and allelic frequencies were assessed for, NOS1 (209 SNPs), NOS2 (122 SNPs), NOS3 (50 SNPs), EDN1 (43 SNPs), EDN2 (48 SNPs), EDN3 (14 SNPs), endothelin receptor A, EDNRA, (27 SNPs), and endothelin receptor B, EDNRB (23 SNPs) using a custom SNPs array. The relative frequencies of NOS-1,-2, and −3, and EDN-1,-2,-3,-EDNRA, and-EDNRB genotypes were evaluated in 608 subjects [128 with OSA, and 480 without OSA (NOSA)]. Furthermore, subjects with OSA were divided into 2 subgroups: OSA with normal endothelial function (OSA-NEF), and OSA with endothelial dysfunction (OSA-ED). Linkage disequilibrium was analyzed using Haploview version 4.2 software.ResultsFor NOSA vs. OSA groups, 15 differentially distributed SNPs for NOS1 gene, and 1 SNP for NOS3 emerged, while 4 SNPs for EDN1 and 1 SNP for both EDN2 and EDN3 were identified. However, in the smaller sub-group for whom endothelial function was available, none of the significant SNPs was retained due to lack of statistical power.ConclusionsDifferences in the distribution of polymorphisms among NOS and EDN gene families suggest that these SNPs could play a contributory role in the pathophysiology and risk of OSA-induced cardiovascular morbidity. Thus, analysis of genotype-phenotype interactions in children with OSA may assist in the formulation of categorical risk estimates.


American Journal of Respiratory Cell and Molecular Biology | 2017

Visceral White Adipose Tissue after Chronic Intermittent and Sustained Hypoxia in Mice

David Gozal; Alex Gileles-Hillel; Rene Cortese; Yan Li; Isaac Almendros; Zhuanhong Qiao; Ahamed A. Khalyfa; Jorge Andrade; Abdelnaby Khalyfa

&NA; Angiogenesis, a process induced by hypoxia in visceral white adipose tissues (vWAT) in the context of obesity, mediates obesity‐induced metabolic dysfunction and insulin resistance. Chronic intermittent hypoxia (IH) and sustained hypoxia (SH) induce body weight reductions and insulin resistance of different magnitudes, suggesting different hypoxia inducible factor (HIF)‐1&agr;‐related activity. Eight‐week‐old male C57BL/6J mice (n = 10‐12/group) were exposed to either IH, SH, or room air (RA). vWAT were analyzed for insulin sensitivity (phosphorylated (pAKT)/AKT), HIF‐1&agr; transcription using chromatin immunoprecipitation (ChIP)‐sequencing, angiogenesis using immunohistochemistry, and gene expression of different fat cell markers and HIF‐1&agr; gene targets using quantitative polymerase chain reaction or microarrays. Body and vWAT weights were reduced in hypoxia (SH > IH > RA; P < 0.001), with vWAT in IH manifesting vascular rarefaction and increased proinflammatory macrophages. HIF‐1&agr; ChIP‐sequencing showed markedly increased binding sites in SH‐exposed vWAT both at 6 hours and at 6 weeks compared with IH, the latter also showing decreased vascular endothelial growth factor, endothelial nitric oxide synthase, P2RX5, and PAT2 expression, and insulin resistance (IH > > > SH = RA; P < 0.001). IH induces preferential whitening of vWAT, as opposed to prominent browning in SH. Unlike SH, IH elicits early HIF‐1&agr; activity that is unsustained over time and is accompanied by concurrent vascular rarefaction, inflammation, and insulin resistance. Thus, the dichotomous changes in HIF‐1&agr; transcriptional activity and brown/beige/white fat balance in IH and SH should enable exploration of mechanisms by which altered sympathetic outflow, such as that which occurs in apneic patients, results in whitening, rather than the anticipated browning of adipose tissues that occurs in SH.


Journal of Translational Medicine | 2013

Genetic variance in nitric oxide synthase and endothelin genes among children with and without endothelial dysfunction.

Siriporn Chatsuriyawong; David Gozal; Leila Kheirandish-Gozal; Rakesh Bhattacharjee; Ahamed A. Khalyfa; Yang Wang; Hakon Hakonarson; Brendan J. Keating; Wasana Sukhumsirichart; Abdelnaby Khalyfa

BackgroundThe presence of endothelial dysfunction (ED) constitutes an early risk factor for cardiovascular disease (CVD) in children. Nitric oxide (NO) and endothelin (EDN) are generated in endothelial cells and are critical regulators of vascular function, with ED resulting from an imbalance between these two molecules. We hypothesized that genetic variants in NO synthase and EDN isoforms and its receptors (EDNRA and EDNRB) may account for a proportion of the risk for ED in developing children.MethodsConsecutive children (ages 5–10 years) were prospectively recruited from the community. Time to peak post-occlusive reperfusion (Tmax) was considered as the indicator of either normal endothelial function (NEF; Tmax < 45 sec) or ED (Tmax ≥ 45 sec). Lipid profiles, high sensitivity C-reactive protein (hsCRP), fasting glucose and insulin were assayed using ELISA. Genomic DNA from peripheral blood was extracted and genotyped for NOS1 (209 SNPs), NOS2 (122 SNPs), NOS3 (50 SNPs), EDN1 (43 SNPs), EDN2 (48 SNPs), EDN3 (14 SNPs), EDNRA (27 SNPs), and EDNRB (23 SNPs) using a custom SNPs array. Linkage disequilibrium was analyzed using Haploview version 4.2 software.ResultsThe relative frequencies of SNPs were evaluated in 122 children, 84 with NEF and 38 with ED. The frequencies of NOS1 (11 SNPs), and EDN1 (2 SNPs) were differentially distributed between NEF vs. ED, and no significant differences emerged for all other genes. Significant SNPs for NOS1 and EDN1 SNPs were further validated with RT-PCR.ConclusionsGenetic variants in the NOS1 and EDN1 genes appear to account for important components of the variance in endothelial function, particularly when concurrent risk factors such as obesity exist. Thus, analysis of genotype-phenotype interactions in children at risk for ED will be critical for more accurate formulation of categorical CVD risk estimates.


British Journal of Haematology | 2016

Extracellular microvesicle microRNAs in children with sickle cell anaemia with divergent clinical phenotypes

Abdelnaby Khalyfa; Ahamed A. Khalyfa; Mahzad Akbarpour; Phillippe Connes; Marc Romana; Gabrielle Lapping-Carr; Chunling Zhang; Jorge Andrade; David Gozal

Sickle cell anaemia (SCA) is the most frequent genetic haemoglobinopathy, which exhibits a highly variable clinical course characterized by hyper‐coagulable and pro‐inflammatory states, as well as endothelial dysfunction. Extracellular microvesicles are released into biological fluids and play a role in modifying the functional phenotype of target cells. We hypothesized that potential differences in plasma‐derived extracellular microvesicles (EV) function and cargo from SCA patients may underlie divergent clinical trajectories. Plasma EV from SCA patients with mild, intermediate and severe clinical disease course were isolated, and primary endothelial cell cultures were exposed. Endothelial cell activation, monocyte adhesion, barrier disruption and exosome cargo (microRNA microarrays) were assessed. EV disrupted the endothelial barrier and induced expression of adhesion molecules and monocyte adhesion in a SCA severity‐dependent manner compared to healthy children. Microarray approaches identified a restricted signature of exosomal microRNAs that readily distinguished severe from mild SCA, as well as from healthy children. The microRNA candidates were further validated using quantitative real time polymerase chain reaction assays, and revealed putative gene targets. Circulating exosomal microRNAs may play important roles in predicting the clinical course of SCA, and in delineation of individually tailored, mechanistically‐based clinical treatment approaches of SCA patients in the near future.


Scientific Reports | 2017

Aorta macrophage inflammatory and epigenetic changes in a murine model of obstructive sleep apnea: Potential role of CD36

Rene Cortese; Alex Gileles-Hillel; Abdelnaby Khalyfa; Isaac Almendros; Mahzad Akbarpour; Ahamed A. Khalyfa; Zhuanghong Qiao; Tzintzuni Garcia; Jorge Andrade; David Gozal

Obstructive sleep apnea (OSA) affects 8–10% of the population, is characterized by chronic intermittent hypoxia (CIH), and causally associates with cardiovascular morbidities. In CIH-exposed mice, closely mimicking the chronicity of human OSA, increased accumulation and proliferation of pro-inflammatory metabolic M1-like macrophages highly expressing CD36, emerged in aorta. Transcriptomic and MeDIP-seq approaches identified activation of pro-atherogenic pathways involving a complex interplay of histone modifications in functionally-relevant biological pathways, such as inflammation and oxidative stress in aorta macrophages. Discontinuation of CIH did not elicit significant improvements in aorta wall macrophage phenotype. However, CIH-induced aorta changes were absent in CD36 knockout mice, Our results provide mechanistic insights showing that CIH exposures during sleep in absence of concurrent pro-atherogenic settings (i.e., genetic propensity or dietary manipulation) lead to the recruitment of CD36(+)high macrophages to the aortic wall and trigger atherogenesis. Furthermore, long-term CIH-induced changes may not be reversible with usual OSA treatment.

Collaboration


Dive into the Ahamed A. Khalyfa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge