Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aharon Bar-Hillel is active.

Publication


Featured researches published by Aharon Bar-Hillel.


computer vision and pattern recognition | 2012

Locally Orderless Tracking

Shaul Oron; Aharon Bar-Hillel; Dan Levi; Shai Avidan

Locally Orderless Tracking (LOT) is a visual tracking algorithm that automatically estimates the amount of local (dis)order in the object. This lets the tracker specialize in both rigid and deformable objects on-line and with no prior assumptions. We provide a probabilistic model of the object variations over time. The model is implemented using the Earth Movers Distance (EMD) with two parameters that control the cost of moving pixels and changing their color. We adjust these costs on-line during tracking to account for the amount of local (dis)order in the object. We show LOTs tracking capabilities on challenging video sequences, both commonly used and new, demonstrating performance comparable to state-of-the-art methods.


computer vision and pattern recognition | 2004

Learning distance functions for image retrieval

Tomer Hertz; Aharon Bar-Hillel; Daphna Weinshall

Image retrieval critically relies on the distance function used to compare a query image to images in the database. We suggest learning such distance functions by training binary classifiers with margins, where the classifiers are defined over the product space of pairs of images. The classifiers are trained to distinguish between pairs in which the images are from the same class and pairs, which contain images from different classes. The signed margin is used as a distance function. We explore several variants of this idea, based on using SVM and boosting algorithms as product space classifiers. Our main contribution is a distance learning method, which combines boosting hypotheses over the product space with a weak learner based on partitioning the original feature space. The weak learner used is a Gaussian mixture model computed using a constrained EM algorithm, where the constraints are equivalence constraints on pairs of data points. This approach allows us to incorporate unlabeled data into the training process. Using some benchmark databases from the UCI repository, we show that our margin based methods significantly outperform existing metric learning methods, which are based an learning a Mahalanobis distance. We then show comparative results of image retrieval in a distributed learning paradigm, using two databases: a large database of facial images (YaleB), and a database of natural images taken from a commercial CD. In both cases our GMM based boosting method outperforms all other methods, and its generalization to unseen classes is superior.


international conference on machine learning | 2004

Boosting margin based distance functions for clustering

Tomer Hertz; Aharon Bar-Hillel; Daphna Weinshall

The performance of graph based clustering methods critically depends on the quality of the distance function used to compute similarities between pairs of neighboring nodes. In this paper we learn distance functions by training binary classifiers with margins. The classifiers are defined over the product space of pairs of points and are trained to distinguish whether two points come from the same class or not. The signed margin is used as the distance value. Our main contribution is a distance learning method (DistBoost), which combines boosting hypotheses over the product space with a weak learner based on partitioning the original feature space. Each weak hypothesis is a Gaussian mixture model computed using a semi-supervised constrained EM algorithm, which is trained using both unlabeled and labeled data. We also consider SVM and decision trees boosting as margin based classifiers in the product space. We experimentally compare the margin based distance functions with other existing metric learning methods, and with existing techniques for the direct incorporation of constraints into various clustering algorithms. Clustering performance is measured on some benchmark databases from the UCI repository, a sample from the MNIST database, and a data set of color images of animals. In most cases the DistBoost algorithm significantly and robustly outperformed its competitors.


european conference on computer vision | 2010

Part-based feature synthesis for human detection

Aharon Bar-Hillel; Dan Levi; Eyal Krupka; Chen Goldberg

We introduce a new approach for learning part-based object detection through feature synthesis. Our method consists of an iterative process of feature generation and pruning. A feature generation procedure is presented in which basic part-based features are developed into a feature hierarchy using operators for part localization, part refining and part combination. Feature pruning is done using a new feature selection algorithm for linear SVM, termed Predictive Feature Selection (PFS), which is governed by weight prediction. The algorithm makes it possible to choose from O(106) features in an efficient but accurate manner. We analyze the validity and behavior of PFS and empirically demonstrate its speed and accuracy advantages over relevant competitors. We present an empirical evaluation of our method on three human detection datasets including the current de-facto benchmarks (the INRIA and Caltech pedestrian datasets) and a new challenging dataset of children images in difficult poses. The evaluation suggests that our approach is on a par with the best current methods and advances the state-of-the-art on the Caltech pedestrian training dataset.


computer vision and pattern recognition | 2003

Enhancing image and video retrieval: learning via equivalence constraints

Tomer Hertz; Noam Shental; Aharon Bar-Hillel; Daphna Weinshall

The paper is about learning using partial information in the form of equivalence constraints. Equivalence constraints provide relational information about the labels of data points, rather than the labels themselves. Our work is motivated by the observation that in many real life applications partial information about the data can be obtained with very little cost. For example, in video indexing we may want to use the fact that a sequence of faces obtained from successive frames in roughly the same location is likely to contain the same unknown individual. Learning using equivalence constraints is different from learning using labels and poses new technical challenges. In this paper we present three novel methods for clustering and classification, which use equivalence constraints. We provide results of our methods on a distributed image querying system that works on a large facial image database, and on the clustering and retrieval of surveillance data. Our results show that we can significantly improve the performance of image retrieval by taking advantage of such assumptions as temporal continuity in the data. Significant improvement is also obtained by making the users of the system take the role of distributed teachers, which reduces the need for expensive labeling by paid human labor.


computer vision and pattern recognition | 2005

Object class recognition by boosting a part-based model

Aharon Bar-Hillel; Tomer Hertz; Daphna Weinshall

We propose a new technique for object class recognition, which learns a generative appearance model in a discriminative manner. The technique is based on the intermediate representation of an image as a set of patches, which are extracted using an interest point detector. The learning problem becomes an instance of supervised learning from sets of unordered features. In order to solve this problem, we designed a classifier based on a simple, part based, generative object model. Only the appearance of each part is modeled. When learning the model parameters, we use a discriminative boosting algorithm which minimizes the loss of the training error directly. The models thus learnt have clear probabilistic semantics, and also maintain good classification performance. The performance of the algorithm has been tested using publicly available benchmark data, and shown to be comparable to other state of the art algorithms for this task; our main advantage in these comparisons is speed (order of magnitudes faster) and scalability.


Brain Research | 2008

Comparison processes in category learning: from theory to behavior.

Rubi Hammer; Aharon Bar-Hillel; Tomer Hertz; Daphna Weinshall; Shaul Hochstein

Recent studies stressed the importance of comparing exemplars both for improving performance by artificial classifiers as well as for explaining human category-learning strategies. In this report we provide a theoretical analysis for the usability of exemplar comparison for category-learning. We distinguish between two types of comparison -- comparison of exemplars identified to belong to the same category vs. comparison of exemplars identified to belong to two different categories. Our analysis suggests that these two types of comparison differ both qualitatively and quantitatively. In particular, in most everyday life scenarios, comparison of same-class exemplars will be far more informative than comparison of different-class exemplars. We also present behavioral findings suggesting that these properties of the two types of comparison shape the category-learning strategies that people implement. The predisposition for use of one strategy in preference to the other often results in a significant gap between the actual information content provided, and the way this information is eventually employed. These findings may further suggest under which conditions the reported category-learning biases may be overcome.


International Journal of Computer Vision | 2008

Efficient Learning of Relational Object Class Models

Aharon Bar-Hillel; Daphna Weinshall

Abstract We present an efficient method for learning part-based object class models from unsegmented images represented as sets of salient features. A model includes parts’ appearance, as well as location and scale relations between parts. The object class is generatively modeled using a simple Bayesian network with a central hidden node containing location and scale information, and nodes describing object parts. The model’s parameters, however, are optimized to reduce a loss function of the training error, as in discriminative methods. We show how boosting techniques can be extended to optimize the relational model proposed, with complexity linear in the number of parts and the number of features per image. This efficiency allows our method to learn relational models with many parts and features. The method has an advantage over purely generative and purely discriminative approaches for learning from sets of salient features, since generative method often use a small number of parts and features, while discriminative methods tend to ignore geometrical relations between parts. Experimental results are described, using some bench-mark data sets and three sets of newly collected data, showing the relative merits of our method in recognition and localization tasks.


international conference on computer vision | 2011

Fusing visual and range imaging for object class recognition

Aharon Bar-Hillel; Dmitri Hanukaev; Dan Levi

Category level object recognition has improved significantly in the last few years, but machine performance remains unsatisfactory for most real-world applications. We believe this gap may be bridged using additional depth information obtained from range imaging, which was recently used to overcome similar problems in body shape interpretation. This paper presents a system which successfully fuses visual and range imaging for object category classification. We explore fusion at multiple levels: using depth as an attention mechanism, high-level fusion at the classifier level and low-level fusion of local descriptors, and show that each mechanism makes a unique contribution to performance. For low-level fusion we present a new algorithm for training of local descriptors, the Generalized Image Feature Transform (GIFT), which generalizes current representations such as SIFT and spatial pyramids and allows for the creation of new representations based on multiple channels of information. We show that our system improves state-of-the-art visual-only and depth-only methods on a diverse dataset of every-day objects.


conference on learning theory | 2003

Learning with Equivalence Constraints and the Relation to Multiclass Learning

Aharon Bar-Hillel; Daphna Weinshall

We study the problem of learning partitions using equivalence constraints as input. This is a binary classification problem in the product space of pairs of datapoints. The training data includes pairs of datapoints which are labeled as coming from the same class or not. This kind of data appears naturally in applications where explicit labeling of datapoints is hard to get, but relations between datapoints can be more easily obtained, using, for example, Markovian dependency (as in video clips).

Collaboration


Dive into the Aharon Bar-Hillel's collaboration.

Top Co-Authors

Avatar

Daphna Weinshall

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Tomer Hertz

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Noam Shental

Open University of Israel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge