Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmad Agil is active.

Publication


Featured researches published by Ahmad Agil.


Journal of Pineal Research | 2012

Melatonin improves glucose homeostasis in young Zucker diabetic fatty rats.

Ahmad Agil; Isaac Rosado; Rosario Ruiz; Adriana Figueroa; Nourahouda Zen; Gumersindo Fernández-Vázquez

Abstract:  The aim of this study was to investigate the effects of melatonin on glucose homeostasis in young male Zucker diabetic fatty (ZDF) rats, an experimental model of metabolic syndrome and type 2 diabetes mellitus (T2DM). ZDF rats (n = 30) and lean littermates (ZL) (n = 30) were used. At 6 wk of age, both lean and fatty animals were subdivided into three groups, each composed of ten rats: naive (N), vehicle treated (V), and melatonin treated (M) (10 mg/kg/day) for 6 wk. Vehicle and melatonin were added to the drinking water. ZDF rats developed DM (fasting hyperglycemia, 460 ± 39.8 mg/dL; HbA1c 8.3 ± 0.5%) with both insulin resistance (HOMA‐IR 9.28 ± 0.9 versus 1.2 ± 0.1 in ZL) and decreased β‐cell function (HOMA1‐%B) by 75%, compared with ZL rats. Melatonin reduced fasting hyperglycemia by 18.6% (P < 0.05) and HbA1c by 11% (P < 0.05) in ZDF rats. Also, melatonin lowered insulinemia by 15.9% (P < 0.05) and HOMA‐IR by 31% (P < 0.01) and increased HOMA1‐%B by 14.4% (P < 0.05). In addition, melatonin decreased hyperleptinemia by 34% (P < 0.001) and raised hypoadiponectinemia by 40% (P < 0.001) in ZDF rats. Moreover, melatonin reduced serum free fatty acid levels by 13.5% (P < 0.05). These data demonstrate that oral melatonin administration ameliorates glucose homeostasis in young ZDF rats by improving both insulin action and β‐cell function. These observations have implications on melatonin’s possible use as a new pharmacologic therapy for improving glucose homeostasis and of obesity‐related T2DM, in young subjects.


Journal of Pineal Research | 2010

Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats

Ahmad Agil; Miguel Navarro-Alarcón; Rosario Ruiz; Sawsan Abuhamadah; Mohamad-Yehia El-Mir; Gumersindo Fernández Vázquez

Abstract:  The study objective was to investigate the effects of melatonin on obesity and obesity‐associated systolic hypertension and dyslipidemia in young male Zucker diabetic fatty (ZDF) rats, an experimental model of the metabolic syndrome. ZDF rats (n = 30) and lean littermates (ZL) (n = 30) were used. At 6 wk of age, both lean and fatty animals were subdivided into three groups (n = 10): naive (N), vehicle‐treated (V), and melatonin‐treated (M) (10 mg/kg/day) for 6 wk. Vehicle and melatonin were added to the drinking water. Melatonin reduced mean weight gain (51 ± 2/100 g BW) versus N‐ZDF group (58 ± 3, P < 0.05) without food intake differences. M‐ZDF rats showed an apparent reduction in systolic hypertension that proved not to be statistically significant, and a significant improvement in dyslipidemia, with a reduction in hypertriglyceridemia from 580 ± 40 to 420.6 ± 40.9 mg/dL (P < 0.01). Melatonin raised high‐density‐lipoprotein (HDL) cholesterol in ZDF (from 81.6 ± 4.9 to 103.1 ± 4.5 mg/dL, P < 0.01) and ZL rats (from 62.8 ± 4.8 to 73.5 ± 4.8 mg/dL, P < 0.05) and significantly reduced low‐density‐lipoprotein (LDL) cholesterol in ZDF rats from 5.20 ± 0.4 to 4.14 ± 0.3 mg/dL (P < 0.05) but had no effect on total cholesterol levels. To our knowledge, this is the first evidence of a positive effect of melatonin on overweight and lipid pattern of obese Zucker diabetic rats, supporting the proposition that melatonin administration may ameliorate overweight and lipid metabolism in humans. Because these benefits occurred in youth, before advanced metabolic and vascular complications, melatonin might help to prevent cardiovascular disease associated with obesity and dyslipidemia.


Journal of Pineal Research | 2013

Melatonin ameliorates low-grade inflammation and oxidative stress in young Zucker diabetic fatty rats

Ahmad Agil; Russel J. Reiter; Aroa Jiménez-Aranda; Ruth Ibán-Arias; Miguel Navarro-Alarcón; Juan A. Marchal; Abdu Adem; Gumersindo Fernández-Vázquez

The aim of this study was to investigate the effects of melatonin on low‐grade inflammation and oxidative stress in young male Zucker diabetic fatty (ZDF) rats, an experimental model of metabolic syndrome and type 2 diabetes mellitus (T2DM). ZDF rats (n = 30) and lean littermates (ZL) (n = 30) were used. At 6 wk of age, both lean and fatty animals were subdivided into three groups, each composed of 10 rats: naive (N), vehicle treated (V), and melatonin treated (M) (10 mg/kg/day) for 6 wk. Vehicle and melatonin were added to the drinking water. Pro‐inflammatory state was evaluated by plasma levels of interleukin‐6 (IL‐6), tumor necrosis factor‐α (TNF‐α), and C‐reactive protein (CRP). Also, oxidative stress was assessed by plasma lipid peroxidation (LPO), both basal and after Fe2+/H2O2 inducement. ZDF rats exhibited higher levels of IL‐6 (112.4 ± 1.5 pg/mL), TNF‐α (11.0 ± 0.1 pg/mL) and CRP (828 ± 16.0 µg/mL) compared with lean rats (IL‐6, 89.9 ± 1.0, P < 0.01; TNF‐α, 9.7 ± 0.4, P < 0.01; CRP, 508 ± 21.5, P < 0.001). Melatonin lowered IL‐6 (10%, P < 0.05), TNF‐α (10%, P < 0.05), and CRP (21%, P < 0.01). Basal and Fe2+/H2O2‐induced LPO, expressed as malondialdehyde equivalents (µmol/L), were higher in ZDF rats (basal, 3.2 ± 0.1 versus 2.5 ± 0.1 in ZL, P < 0.01; Fe2+/H2O2‐induced, 8.7 ± 0.2 versus 5.5 ± 0.3 in ZL; P < 0.001). Melatonin improved basal LPO (15%, P < 0.05) in ZDF rats, and Fe2+/H2O2‐ induced LPO in both ZL (15.2%, P < 0.01) and ZDF rats (39%, P < 0.001). These results demonstrated that oral melatonin administration ameliorates the pro‐inflammatory state and oxidative stress, which underlie the development of insulin resistance and their consequences, metabolic syndrome, diabetes, and cardiovascular disease.


Journal of Pineal Research | 2013

Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats

Aroa Jiménez-Aranda; Gumersindo Fernández-Vázquez; Daniel Campos; Mohamed Tassi; Lourdes Velasco-Perez; Dun Xian Tan; Russel J. Reiter; Ahmad Agil

Melatonin limits obesity in rodents without affecting food intake and activity, suggesting a thermogenic effect. Identification of brown fat (beige/brite) in white adipose tissue (WAT) prompted us to investigate whether melatonin is a brown‐fat inducer. We used Zücker diabetic fatty (ZDF) rats, a model of obesity‐related type 2 diabetes and a strain in which melatonin reduces obesity and improves their metabolic profiles. At 5 wk of age, ZDF rats and lean littermates (ZL) were subdivided into two groups, each composed of four rats: control and those treated with oral melatonin in the drinking water (10 mg/kg/day) for 6 wk. Melatonin induced browning of inguinal WAT in both ZDF and ZL rats. Hematoxylin–eosin staining showed patches of brown‐like adipocytes in inguinal WAT in ZDF rats and also increased the amounts in ZL animals. Inguinal skin temperature was similar in untreated lean and obese rats. Melatonin increased inguinal temperature by 1.36 ± 0.02°C in ZL and by 0.55 ± 0.04°C in ZDF rats and sensitized the thermogenic effect of acute cold exposure in both groups. Melatonin increased the amounts of thermogenic proteins, uncoupling protein 1 (UCP1) (by ~2‐fold, P < 0.01) and PGC‐1α (by 25%, P < 0.05) in extracts from beige inguinal areas in ZL rats. Melatonin also induced measurable amounts of UCP1 and stimulated by ~2‐fold the levels of PGC‐1α in ZDF animals. Locomotor activity and circulating irisin levels were not affected by melatonin. These results demonstrate that chronic oral melatonin drives WAT into a brown‐fat‐like function in ZDF rats. This may contribute to melatonin′s control of body weight and its metabolic benefits.


Journal of Pineal Research | 2015

Melatonin reduces hepatic mitochondrial dysfunction in diabetic obese rats

Ahmad Agil; Mazen El-Hammadi; Aroa Jiménez-Aranda; Mohamed Tassi; Walied Abdo; Gumersindo Fernández-Vázquez; Russel J. Reiter

Hepatic mitochondrial dysfunction is thought to play a role in the development of liver steatosis and insulin resistance, which are both common characteristics of obesity and type 2 diabetes mellitus (T2DM). It was hypothesized that the antioxidant properties of melatonin could potentially improve the impaired functions of hepatic mitochondria in diabetic obese animals. Male Zucker diabetic fatty (ZDF) rats and lean littermates (ZL) were given either melatonin (10 mg/kg BW/day) orally for 6 wk (M‐ZDF and M‐ZL) or vehicle as control groups (C‐ZDF and C‐ZL). Hepatic function was evaluated by measurement of serum alanine transaminase and aspartate transaminase levels, liver histopathology and electron microscopy, and hepatic mitochondrial functions. Several impaired functions of hepatic mitochondria were observed in C‐ZDF in comparison with C‐ZL rats. Melatonin treatment to ZDF rats decreases serum levels of ALT (P < 0.001), alleviates liver steatosis and vacuolation, and also mitigates diabetic‐induced mitochondrial abnormalities, glycogen, and lipid accumulation. Melatonin improves mitochondrial dysfunction in M‐ZDF rats by increasing activities of mitochondrial citrate synthase (P < 0.001) and complex IV of electron transfer chain (P < 0.05) and enhances state 3 respiration (P < 0.001), respiratory control index (RCR) (P < 0.01), and phosphorylation coefficient (ADP/O ratio) (P < 0.05). Also melatonin augments ATP production (P < 0.05) and diminishes uncoupling protein 2 levels (P < 0.001). These results demonstrate that chronic oral melatonin reduces liver steatosis and mitochondria dysfunction in ZDF rats. Therefore, it may be beneficial in the treatment of diabesity.


Journal of Pineal Research | 2014

Melatonin improves mitochondrial function in inguinal white adipose tissue of Zücker diabetic fatty rats

Aroa Jiménez-Aranda; Gumersindo Fernández-Vázquez; María Mohammad A-Serrano; Russel J. Reiter; Ahmad Agil

Mitochondrial dysfunction in adipose tissue may contribute to obesity‐related metabolic derangements such as type 2 diabetes mellitus (T2DM). Because mitochondria are a target for melatonin action, the goal of this study was to investigate the effects of melatonin on mitochondrial function in white (WAT) and beige inguinal adipose tissue of Zücker diabetic fatty (ZDF) rats, a model of obesity‐related T2DM. In this experimental model, melatonin reduces obesity and improves the metabolic profile. At 6 wk of age, ZDF rats and lean littermates (ZL) were subdivided into two groups, each composed of four rats: control (C‐ZDF and C‐ZL) and treated with oral melatonin in the drinking water (10 mg/kg/day) for 6 wk (M‐ZDF and M‐ZL). After the treatment period, animals were sacrificed, tissues dissected, and mitochondrial function assessed in isolated organelles. Melatonin increased the respiratory control ratio (RCR) in mitochondria from white fat of both lean (by 26.5%, P < 0.01) and obese (by 34.5%, P < 0.01) rats mainly through a reduction of proton leaking component of respiration (state 4) (28% decrease in ZL, P < 0.01 and 35% in ZDF, P < 0.01). However, melatonin treatment lowered the RCR in beige mitochondria of both lean (by 7%, P < 0.05) and obese (by 13%, P < 0.05) rats by maintaining high rates of uncoupled respiration. Melatonin also lowered mitochondrial oxidative status by reducing nitrite levels and by increasing superoxide dismutase activity. Moreover, melatonin treatment also caused a profound inhibition of Ca‐induced opening of mPTP in isolated mitochondria from both types of fat, white and beige, in both lean and obese rats. These results demonstrate that chronic oral melatonin improves mitochondrial respiration and reduces the oxidative status and susceptibility to apoptosis in white and beige adipocytes. These melatonin effects help to prevent mitochondrial dysfunction and thereby to improve obesity‐related metabolic disorders such as diabetes and dyslipidemia of ZDF rats.


Brain Research | 2002

Mechanisms involved in morphine-induced activation of synaptosomal Na+,K+-ATPase

Willias Masocha; Luis Gerardo González; José M. Baeyens; Ahmad Agil

Morphine through mu-opioid receptors and G(i/o) proteins modulates several cellular effector systems; however, the mechanisms involved in the regulation of Na(+),K(+)-ATPase are not well known. We evaluated the effect of two mu-opioid receptor agonists on ouabain-sensitive Na(+),K(+)-ATPase activity in mice forebrain synaptosomes, and examined the modulation of this effect by antagonists of opioid receptors and a blocker of G(i/o) proteins. Incubation of synaptosomes with morphine (10(-9) to 10(-4) M) or buprenorphine (10(-10) to 10(-5) M) concentration-dependently stimulated Na(+),K(+)-ATPase activity, morphine being less potent but more efficacious than buprenorphine. Morphine did not displace [3H]ouabain from its binding site (Na(+),K(+)-ATPase) to forebrain membranes, whereas ouabain did so in a concentration-dependent manner. Naloxone, an opioid antagonist (10(-6) M), added to the synaptosomal medium, antagonized the enhancement of Na(+),K(+)-ATPase activity induced by morphine, producing a parallel shift to the right of the morphine concentration-response curve. Treatment with beta-funaltrexamine, a mu antagonist (2.5 and 10 microg/mouse, i.c.v.) and naloxonazine, a mu1 antagonist (35 mg/kg, s.c.), 24 h before the synaptosomes were obtained, produced a dose-dependent reduction in the E(max) of the morphine-induced increase in Na(+),K(+)-ATPase activity in vitro, but did not significantly modify its EC(50). Pertussis toxin (G(i/o) protein blocker) treatment at a dose of 0.5 microg/mouse, administered i.c.v. 5 days before the synaptosomes were obtained, completely abolished the enhancement of Na(+),K(+)-ATPase activity induced by morphine. A lower dose (0.25 microg/mouse) decreased the E(max) of morphine by 50% but did not significantly affect its EC(50). These results suggest that morphine indirectly enhances Na(+),K(+)-ATPase activity in the brain by activating mu-opioid receptors and G(i/o) proteins.


Translational Research | 2015

Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders

Sabiniano Roman; Ahmad Agil; Macarena Perán; Eduardo Alvaro-Galue; Francisco J. Ruiz-Ojeda; Gumersindo Fernández-Vázquez; Juan A. Marchal

In humans, 2 functionally different types of adipose tissue coexist: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is involved in energy storage, whereas BAT is involved in energy expenditure. Increased amounts of WAT may contribute to the development of metabolic disorders, such as obesity-associated type 2 diabetes mellitus and cardiovascular diseases. In contrast, the thermogenic function of BAT allows high consumption of fatty acids because of the activity of uncoupling protein 1 in the internal mitochondrial membrane. Interestingly, obesity reduction and insulin sensitization have been achieved by BAT activation-regeneration in animal models. This review describes the origin, function, and differentiation mechanisms of BAT to identify new therapeutic strategies for the treatment of metabolic disorders related to obesity. On the basis of the animal studies, novel approaches for BAT regeneration combining stem cells from the adipose tissue with active components, such as melatonin, may have potential for the treatment of metabolic disorders in humans.


European Journal of Pharmacology | 2003

Evaluation of endomorphin-1 on the activity of Na+,K+-ATPase using in vitro and in vivo studies

Gyongyi Horvath; Ahmad Agil; Gabriella Joo; Ildiko Dobos; György Benedek; José M. Baeyens

The goal of this study was to investigate the effects of endomorphin-1 on Na(+),K(+)-ATPase activity in mouse brain synaptosome in vitro, and its antinociceptive interaction with the Na(+),K(+)-ATPase inhibitor ouabain. Endomorphin-1 (0.1 nM-10 microM) produced a concentration-dependent (EC(50): 43.19 nM, CI: 23.38-65.71 nM, E(max): 25.86%, CI: 24.53-27.20%), naloxone-reversible increase of the synaptosomal Na(+),K(+)-ATPase activity. The intrathecally (i.t.) administered endomorphin-1 (2-20 microg) produced a dose-dependent short-lasting increase in the tail-flick latency. Ouabain itself (1-1000 ng, i.t.) did not cause antinociception. Treatment with 10 ng ouabain significantly decreased the antinociceptive effect of 2 microg endomorphin-1, but none of the other combinations did significantly differ from the endomorhin-1-treated groups. These data indicate that endomorphin-1 increases the activity of Na(+),K(+)-ATPase in vitro but this effect may play a weak role in the antinociception induced by intrathecal endomorphin-1.


Biological Trace Element Research | 2011

Altered Serum Selenium and Uric Acid Levels and Dyslipidemia in Hemodialysis Patients Could be Associated with Enhanced Cardiovascular Risk

Loreto Martí del Moral; Ahmad Agil; Miguel Navarro-Alarcón; Herminia López-Ga de la Serrana; Magdalena Palomares-Bayo; María Jesús Oliveras-López

In the present study, the first objective was to follow up serum selenium (Se) concentrations in 117 hemodialysis patients (HPs) during a 2-year longitudinal study, relating concentrations to biochemical indexes (n = 6; namely lipoprotein profile, uric acid, and total protein levels). It was also evaluated whether the disease is associated with an enhanced cardiovascular risk. A healthy control group (n = 50) was also studied. Mean serum Se levels were significantly lower in HPs than in the controls (p = 0.002); mean levels significantly increased from the first to third blood sampling (p < 0.001). HPs showed a marked dyslipidemia, with a significant reduction in total cholesterol, low-density lipoprotein, and high-density lipoprotein cholesterol levels and a significant increase in triglyceride levels (p < 0.001). HPs showed a marked hyperuricemia (p < 0.001). Serum selenium levels in HPs were correlated negatively with uric acid levels (inflammation biomarker; p < 0.01). In HPs, serum Se levels are reduced due to their disease (chronic renal failure). Serum Se levels rose until the third blood sampling. The marked dyslipidemia and hyperuricemia found in HPs and the negative correlation between the serum Se and uric acid levels in these patients could imply an enhanced cardiovascular risk.

Collaboration


Dive into the Ahmad Agil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russel J. Reiter

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge