Ahmad Faizal Abdull Razis
Universiti Putra Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ahmad Faizal Abdull Razis.
Toxicology | 2010
Ahmad Faizal Abdull Razis; Manuela Bagatta; Gina Rosalinda De Nicola; Renato Iori; Costas Ioannides
The currently accepted view is that the chemopreventive activity of glucosinolates is exclusively mediated by their degradation products, such as isothiocyanates. In the present study, evidence is presented for the first time that intact glucosinolates can modulate carcinogen-metabolising enzyme systems. The glucosinolates glucoraphanin and glucoerucin were isolated from cruciferous vegetables and incubated with precision-cut rat liver slices. Both glucosinolates elevated the O-dealkylations of methoxy- and ethoxyresorufin, markers for CYP1 activity; supplementation of the incubation medium with myrosinase, the enzyme that converts glucosinolates to their corresponding isothiocyanates, abolished these effects. Moreover, both glucoerucin and glucoraphanin increased the apoprotein levels of microsomal CYP1A1, CYP1A2 and CYP1B1. At higher concentrations, both glucosinolates enhanced quinone reductase activity, whereas glucoraphanin also elevated glutathione S-transferase; in this instance, however, supplementation of the incubation medium with myrosinase exacerbated the inductive effect. Finally, both glucosinolates increased modestly cytosolic quinone reductase, GSTα and GSTμ protein levels, which became more pronounced when myrosinase was added to the incubations with the glucosinolate. It may be inferred that intact glucosinolates can modulate the activity of hepatic carcinogen-metabolising enzyme systems and this is likely to impact on the chemopreventive activity linked to cruciferous vegetable consumption.
Lung Cancer | 2011
Ahmad Faizal Abdull Razis; Manuela Bagatta; Gina Rosalinda De Nicola; Renato Iori; Costas Ioannides
It is believed that the chemopreventive activity of cruciferous vegetables in the lung and other tissues is exclusively the result of exposure to degradation products of glucosinolates, such as the isothiocyanates, and that the parent glucosinolates make no contribution. In the present study, evidence is presented for the first time that, in rat lung, the intact glucosinolates, glucoraphanin and glucoerucin, can modulate carcinogen-metabolising enzyme systems. The glucosinolates were isolated from cruciferous vegetables and incubated (1-25 μM) with precision-cut rat lung slices for 24h. Both glucosinolates, at concentrations as low as 1 μM, up-regulated the O-deethylation of ethoxyresorufin and the apoprotein levels of CYP1A1 and CYP1B1; supplementation of the incubation medium with myrosinase, the enzyme that converts glucosinolates to their corresponding isothiocyanates, abolished the rise in ethoxyresorufin O-deethylase activity. In contrast, neither glucosinolate, at the concentrations studied, influenced quinone reductase activity in the lung slices, but addition of myrosinase to the glucosinolate incubations led to a marked rise in activity. Glutathione S-transferase activity, monitored using 1-chloro-2,4-dinitrobenzene as the accepting substrate, was elevated in lung slices exposed to glucoraphanin. GSTα protein levels were increased by glucoraphanin and, to a much lesser extent, glucoerucin. It may be concluded that intact glucosinolates can modulate the activity of pulmonary carcinogen-metabolising enzyme systems, and can thus contribute to the documented chemopreventive activity of cruciferous vegetables in the lung.
Asian Pacific Journal of Cancer Prevention | 2014
Ahmad Faizal Abdull Razis; Muhammad Din Ibrahim; Saie Brindha Kntayya
Phytomedicines are believed to have benefits over conventional drugs and are regaining interest in current research. Moringa oleifera is a multi-purpose herbal plant used as human food and an alternative for medicinal purposes worldwide. It has been identified by researchers as a plant with numerous health benefits including nutritional and medicinal advantages. Moringa oleifera contains essential amino acids, carotenoids in leaves, and components with nutraceutical properties, supporting the idea of using this plant as a nutritional supplement or constituent in food preparation. Some nutritional evaluation has been carried out in leaves and stem. An important factor that accounts for the medicinal uses of Moringa oleifera is its very wide range of vital antioxidants, antibiotics and nutrients including vitamins and minerals. Almost all parts from Moringa can be used as a source for nutrition with other useful values. This mini-review elaborate on details its health benefits.
International Journal of Cancer | 2011
Ahmad Faizal Abdull Razis; Renato Iori; Costas Ioannides
The chemopreventive activity of the phytochemical sulforaphane, (‐)1‐isothiocyanato‐4R‐(methylsulfinyl)‐butane, present in cruciferous vegetables in substantial amounts in the form of glucosinolate, was demonstrated in animal models of cancer using the racemate, despite the fact that humans are exposed only to the R‐enantiomer through the diet. Since a principal mechanism of the chemopreventive activity of sulforaphane is modulation of the carcinogen‐metabolising enzyme systems, a study was conducted in precision‐cut rat liver and lung slices, and in FAO cells comparing the ability of R‐ and S‐sulforaphane to modulate these enzyme systems. R‐sulforaphane elevated hepatic glutathione S‐transferase and quinone reductase whereas the S‐enantiomer had no effect; moreover, the R‐enantiomer was more effective in up‐regulating GSTα, GSTμ and quinone reductase protein levels. In the lung, both enantiomers increased the same enzyme activities with the R‐enantiomer being more potent; in addition, the R‐enantiomer was more effective in up‐regulating GSTα and quinone reductase protein levels. Both isomers increased glutathione levels in both tissues, with R‐sulforaphane being more potent. Finally, R‐sulforaphane was the more effective of the two isomers in up‐regulating CYP1A1/1B1 apoprotein levels in both liver and lung, and CYP1A2 in the liver. Similarly, in FAO cells the R‐enantiomer was far more effective in up‐regulating quinone reductase and glutathione S‐transferase activities and protein levels compared with the S‐isomer. These studies demonstrate clearly the superiority of R‐sulforaphane, when compared with the S‐enantiomer, in stimulating detoxification enzymes, and raises the possibility that the animal studies that employed the racemate may have underestimated the chemopreventive activity of this isothiocyanate.
Archives of Toxicology | 2011
Ahmad Faizal Abdull Razis; Manuela Bagatta; Gina Rosalinda De Nicola; Renato Iori; Costas Ioannides
The potential of three isothiocyanates, namely R,S-sulforaphane, erucin and phenethyl isothiocyanate, of two naturally occurring glucosinolates, namely glucoerucin and glucoraphanin, and of the enantiomers of sulforaphane to modulate glucuronosyl transferase and epoxide hydrolase, two major carcinogen-metabolising enzyme systems, was investigated in precision-cut rat liver slices. Following exposure of the slices to the isothiocyanates (0–25xa0μM), erucin and phenethyl isothiocyanate, but not R,S-sulforaphane, elevated glucuronosyl transferase and epoxide hydrolase activities and expression, determined immunologically. Of the two enantiomers of sulforaphane, the R-enantiomer enhanced, whereas the S-enantiomer impaired, glucuronosyl transferase activity and only the former increased protein expression; furthermore, R-sulforaphane was more effective than the S-enantiomer in up-regulating microsomal epoxide hydrolase. When precision-cut rat liver slices were exposed to the same concentrations of glucoerucin and glucoraphanin, both glucosinolates caused a marked increase in the activity and expression of the microsomal epoxide hydrolase but had no effect on glucuronosyl transferase activity. It may be inferred that the ability of isothiocyanates to enhance hepatic microsomal epoxide hydrolase and glucuronosyl transferase activities is dependent on the nature of the side chain. Moreover, in the case of sulforaphane, the naturally occurring R-enantiomer increased both activities, whereas, in contrast, activities were impaired in the case of the S-enantiomer. Finally, intact glucosinolates are potent inducers of epoxide hydrolase and can thus contribute directly to the chemopreventive potential associated with cruciferous vegetable consumption.
BioMed Research International | 2014
Ahmad Faizal Abdull Razis; Noramaliza Mohd Noor; Nattaya Konsue
Phenethyl isothiocyanate (PEITC) is an isothiocyanate found in watercress as the glucosinolate (gluconasturtiin). The isothiocyanate is converted from the glucosinolate by intestinal microflora or when contacted with myrosinase during the chopping and mastication of the vegetable. PEITC manifested protection against chemically-induced cancers in various tissues. A potential mechanism of chemoprevention is by modulating the metabolism of carcinogens so as to promote deactivation. The principal objective of this study was to investigate in rats the effect of PEITC on carcinogen-metabolising enzyme systems such as sulfotransferase (SULT), N-acetyltransferase (NAT), glucuronosyl transferase (UDP), and epoxide hydrolase (EH) following exposure to low doses that simulate human dietary intake. Rats were fed for 2 weeks diets supplemented with PEITC at 0.06u2009µmol/g (low dose, i.e., dietary intake), 0.6u2009µmol/g (medium dose), and 6.0u2009µmol/g (high dose), and the enzymes were monitored in rat liver. At the Low dose, no induction of the SULT, NAT, and EH was noted, whereas UDP level was elevated. At the Medium dose, only SULT level was increased, whereas at the High dose marked increase in EH level was observed. It is concluded that PEITC modulates carcinogen-metabolising enzyme systems at doses reflecting human intake thus elucidating the mechanism of its chemoprevention.
European Journal of Nutrition | 2013
Ahmad Faizal Abdull Razis; Gina Rosalinda De Nicola; Eleonora Pagnotta; Renato Iori; Costas Ioannides
PurposeGlucosinolates/isothiocyanates are an established class of naturally occurring chemopreventive agents, a principal mechanism of action being to limit the generation of genotoxic metabolites of chemical carcinogens, as a result of modulation of cytochrome P450 and phase II detoxification enzymes. The objective of this study was to assess whether a glucosinolate-rich extract from Daikon sprouts, containing glucroraphasatin and glucoraphenin, is a potential chemopreventive agent by modulating such enzymes in the liver and lung of rats.MethodsRats were exposed to the glucosinolate-rich Daikon extract through the diet, at three dose levels, for 14xa0days, so that the low dose simulates dietary intake.ResultsAt the low dose only, a modest increase was noted in the hepatic dealkylations of methoxy-, ethoxy-, pentoxyresorufin and benzyloxyquinoline that was accompanied by elevated expression of CYP1 and CYP3A2 apoprotein levels. In lung, only a modest increase in the dealkylation of pentoxyresorufin was observed. At higher doses, in both tissues, these increases were abolished. At the same low dietary dose, the Daikon extract elevated markedly glutathione S-transferase activity paralleled by rises in GSTα, GSTμ and GSTπ protein expression. An increase was also noted in quinone reductase activity and expression. Finally, glucuronosyl transferase and epoxide hydrolase activities and expression were also up-regulated, but necessitated higher doses.ConclusionConsidering the ability of Daikon glucosinolates to effectively enhance detoxification enzymes, in particular glutathione S-transferase, it may be inferred that consumption of this vegetable may possess significant chemopreventive activity and warrants further evaluation through epidemiology and studies in animal models of cancer.
Molecular Nutrition & Food Research | 2012
Ahmad Faizal Abdull Razis; Nattaya Konsue; Myrto Dervetzoglou; Kathryn E. Plant; Nick Plant; Costas Ioannides
SCOPEnThe aryl hydrocarbon (Ah) receptor is a ligand-activated transcription factor that is activated by many carcinogens, and its target gene products play a major role in tumour development, so that antagonists of the Ah receptor represent potential chemopreventive agents.nnnMETHODS AND RESULTSnExperimental evidence is presented herein that phenethyl isothiocyanate (PEITC), a phytochemical present in cruciferous vegetables, is such an antagonist. PEITC was a very weak ligand to the Ah receptor, as assessed using the chemical-activated luciferase expression (CALUX) assay, and a poor inducer of CYP1A1 mRNA levels when incubated in precision-cut rat liver slices for 24 h. It antagonised effectively, however, the interaction of benzo[a]pyrene to the receptor, being capable of preventing its binding as well as displacing it from the receptor. Moreover, PEITC suppressed in concentration-dependent manner the benzo[a]pyrene-mediated rise in rat hepatic CYP1A1 mRNA levels in rat slices. Finally, PEITC antagonised the benzo[a]pyrene-mediated increase in the O-deethylation of ethoxyresorufin in both rat and human precision-cut liver slices.nnnCONCLUSIONnIt is concluded that PEITC is an effective antagonist of the Ah receptor in rat and human liver, and this potential may contribute to its established chemopreventive activity.
Archives of Toxicology | 2012
Ahmad Faizal Abdull Razis; Natalya Hanlon; Ewa Soltys; Veronika Krizova; Renato Iori; Kathryn E. Plant; Nick Plant; Costas Ioannides
As the Ah receptor target gene products play a critical role in chemical carcinogenesis, antagonists are considered as potential chemopreventive agents. It is demonstrated in this paper that the isothiocyanates R,S-sulforaphane and erucin are non-competitive antagonists of the aryl hydrocarbon (Ah) receptor. Both isothiocyanates were poor agonists for the receptor and elevated CYP1A1 mRNA levels only modestly when incubated with precision-cut rat liver slices. In contrast, the classical Ah receptor agonist benzo[a]pyrene was a potent inducer of CYP1A1 mRNA levels, with this effect being effectively antagonized by the two isothiocyanates. In further studies, it was demonstrated that R,S-sulforaphane could both prevent the interaction of and displace already bound benzo[a]pyrene from the Ah receptor, but no concentration dependency was observed with respect to the isothiocyanate. Both erucin and R,S-sulforaphane antagonized the benzo[a]pyrene-mediated increase in the CYP1A-mediated O-deethylation of ethoxyresorufin in rat precision-cut liver slices. Of the two isomers of R,S-sulforaphane, the naturally occurring R-isomer was more effective than the S-isomer in antagonizing the activation of the Ah receptor by benzo[a]pyrene. Antagonism of the Ah receptor may be a major contributor to the established chemoprevention of aliphatic isothiocyanates.
Nutrients | 2018
Mohammed Jaafaru; Nurul Ashikin Abd Karim; Mohamad Enas; Patrick Rollin; Emanuela Mazzon; Ahmad Faizal Abdull Razis
Crucifer vegetables, Brassicaceae and other species of the order Brassicales, e.g., Moringaceae that are commonly consumed as spice and food, have been reported to have potential benefits for the treatment and prevention of several health disorders. Though epidemiologically inconclusive, investigations have shown that consumption of those vegetables may result in reducing and preventing the risks associated with neurodegenerative disease development and may also exert other biological protections in humans. The neuroprotective effects of these vegetables have been ascribed to their secondary metabolites, glucosinolates (GLs), and their related hydrolytic products, isothiocyanates (ITCs) that are largely investigated for their various medicinal effects. Extensive pre-clinical studies have revealed more than a few molecular mechanisms of action elucidating multiple biological effects of GLs hydrolytic products. This review summarizes the most significant and up-to-date in vitro and in vivo neuroprotective actions of sulforaphane (SFN), moringin (MG), phenethyl isothiocyanate (PEITC), 6-(methylsulfinyl) hexyl isothiocyanate (6-MSITC) and erucin (ER) in neurodegenerative diseases.
Collaboration
Dive into the Ahmad Faizal Abdull Razis's collaboration.
Consiglio per la ricerca e la sperimentazione in agricoltura
View shared research outputsConsiglio per la ricerca e la sperimentazione in agricoltura
View shared research outputs