Ahmad Hamdan
University of Lorraine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ahmad Hamdan.
Journal of Physics D | 2014
Thierry Belmonte; Ahmad Hamdan; F Kosior; Cédric Noël; G. Henrion
Discharge?surface interaction in liquids includes many phenomena which are reviewed in this work. This is used to examine results in the area of nanoparticle synthesis and to propose a general sketch of formation mechanisms.
Journal of Physics D | 2015
Ahmad Hamdan; Min Suk Cha
Here, we present the microscopic physical characteristics of nanosecond discharges with an array of bubbles in distilled water. In particular, applying a single high-voltage pulse, four delayed intensified charge-coupled device cameras successfully visualized four successive images during a single discharge event. We identified three distinctive modes of ignition inside a bubble, depending on the relative location of the bubble with respect to pin-to-hollow needle electrodes when a single bubble was located in an inter-electrode gap of 1 mm: anode-driven ignition, cathode-driven ignition, and co-ignition near both electrodes. Anode- and cathode-driven ignitions evolved into either a complete propagation of the streamer or an incomplete propagation, which were limited in location by proximity to an ignition location, while co-ignitions consistently showed complete propagation. When we increased the gap to 2 mm to accommodate multiple bubbles in the gap, an ignited bubble near the cathode was able to cause the ignition of an upper adjacent bubble. Bubble–bubble interface zones can also be spots of ignition, such that we observed simultaneous co-ignitions in the zones of bubble–bubble interfaces and near electrodes with triple bubbles. We compared the experimental results of discharge propagation with different ignition modes between Ar, He, and N2 bubbles. In addition, numerical simulations for static electric fields reasonably supported observed ignition behavior such that field intensity was locally enhanced.
Journal of Applied Physics | 2013
Ahmad Hamdan; Cédric Noël; F. Kosior; Gérard Henrion; Thierry Belmonte
Modes of energy dissipation in impacts made on various materials (Al, Cu, Fe, and Si) by discharges in heptane are investigated for micro-gap conditions. Bulk metals and thin films of 300 nm in thickness deposited on silicon wafers are used as samples. Positive high voltage pulses with nanosecond rise times make it possible to isolate a single discharge and to study the way the charge delivered by the power supply is transferred to the larger electrode (the sample) in a pin-to-plate configuration. The diameter of the impacts created by the plasma varies linearly versus the charge raised at a power close to 0.5. However, the exact value of the power depends on the material. We also show how the impact morphologies change with the applied charge. At high charges, the diameters of impacts on thin films behave as those made on silicon. At low charges, they behave as the bulk material. Finally, we show that the energy dissipated in impacts is below a few percent.
Journal of Physics D | 2014
Ahmad Hamdan; Ilya Marinov; Antoine Rousseau; Thierry Belmonte
Nanosecond-pulsed micro-discharges in heptane are studied by time-resolved imaging in pin-to-plate configuration. When a voltage of +5?kV is applied to the pin electrode, the discharge exhibits one maximum in light intensity. At +15?kV, filtered images show that up to three maxima can be identified. These maxima are associated with local electron?ion recombination and bremsstrahlung emission and attributed to the development of a complex space-charge field. In the post-discharge, the dynamics of the gas bubble can be simulated by the Gilmore model, and the pressure evolution in this bubble is predicted. From our results, it seems reasonable to think that the gas bubble develops from the post-discharge of the spark. Results obtained by using the double-pulse technique show that light emission during the post-discharge of the second discharge lasts 10 times longer than the post-discharge of the first spark. The pressure drop in the gas bubble, predicted by the Gilmore model, is used to explain this result and it provides a control method by optical diagnostics in liquids.
Journal of Applied Physics | 2013
Ahmad Hamdan; F. Kosior; C. Noël; G. Henrion; J.-N. Audinot; T. Gries; Thierry Belmonte
The main processes related to discharges between pin and plate electrodes in hydrocarbon liquid (heptane) are modelled for micro-gap (from 10 to 100 μm) conditions. When a plasma channel hits the surface, a micro-crater is created. The different phenomena controlling the geometry (shape and dimension) of a single crater are described and included in a theoretical model developed for the specific case of pure aluminium. The influence of the most important parameters affecting the geometry of the crater is discussed. Among them, one finds the pressure exerted by the plasma on the liquid metal. It is found that the distribution of the pressure applied on the liquid pool changes significantly the way the plasma shapes the pool. It is assumed that at high charges, the pressure profile is tilted from the channel axis, leading to the formation of a central protrusion. On the other hand, we demonstrate that Thomson-Marangoni forces play an important role for crater diameters smaller than 5 μm. Then, the choice of...
Journal of Physics D | 2016
Ahmad Hamdan; Min Suk Cha
Electric discharge in liquids with bubbles can reduce the energy consumption, which increases treatment efficiency. We present an experimental study of nanosecond discharges in distilled water bubbled with the monoatomic gas argon and with the polyatomic gases methane, carbon dioxide, and propane. We monitor the time evolution of the voltage and current waveforms, and calculate the injected charges to characterize the discharge. We establish a relationship between the injected charges and the shape of the plasma by time-resolved imaging to find that increasing the size of the gap reduces the injected charges. Moreover, we determine the plasma characteristics, including electron density, excitation temperatures (for atoms and ions), and rotational temperature of the OH and C2 radicals found in the plasma. Our space- and time-averaged measurements allow us to propose a spatial distribution of the plasma that is helpful for understanding the plasma dynamics necessary to develop and optimize applications based on nanosecond discharges in bubbled liquids.
AIP Advances | 2015
Mahmoud S. Dawood; Ahmad Hamdan; J. Margot
The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure) and compositions (argon, nitrogen and helium) on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for...
Journal of the Acoustical Society of America | 2013
Ahmad Hamdan; Cédric Noël; F. Kosior; Gérard Henrion; Thierry Belmonte
The determination of the initial pressure at the bubble wall created by a discharge in heptane for micro-gap conditions cannot be determined straightforwardly by modeling the time-oscillations of the bubble. The resolution of the Gilmore equation gives the same solutions beyond 1 μs typically for various sets of initial parameters, making impossible the determination of the initial pressure at the bubble wall. Furthermore, the very first instant of the bubble formation is not easily accessible at very short time scales because of the plasma emission. Since the pressure waves propagate in the liquid, it is much easier to gain information on the first instants of the bubble formation by studying the pressure field far from the emission source. Then, it is possible to deduce by modeling what happened at the beginning of the emission of the pressure waves. The proposed solution consists in looking at the oscillations affecting another bubble located at least twice farther from the interelectrode gap than the maximum radius reached by the discharge bubble. The initial plasma pressure can be determined by this method.
IEEE Transactions on Plasma Science | 2014
Ahmad Hamdan; Ilya Marinov; Antoine Rousseau; Thierry Belmonte
Ignition of a discharge in liquid heptane is studied by a nanosecond time-resolved imaging using microgap conditions. Using an optical filter at 656 nm, we could enhance the spatial distribution of electrons within the interelectrode gap. Intense and multiple space charges are evidenced.
IEEE Transactions on Plasma Science | 2016
Ahmad Hamdan; Min Suk Cha
Recently, an aqueous discharge reactor was developed to facilitate reformation of liquid fuels by in-liquid plasma. To gain a microscopic understanding of the physical elements behind this aqueous reactor, we investigate nanosecond discharges in liquid n-heptane with single and double gaseous bubbles in the gap between electrodes. We introduce discharge probability (DP) to characterize the stochastic nature of the discharges, and we investigate the dependence of DP on the gap distance, applied voltage, gaseous bubble composition, and the water content in n-heptane/distilled-water emulsified mixtures. Propagation of a streamer through the bubbles indicates no discharges in the liquids. DP is controlled by the properties of the gaseous bubble rather than by the composition of the liquid mixture in the gap with a single bubble; meanwhile, DP is determined by the dielectric permittivity of the liquid mixture in the gap with double bubbles, results that are supported by static electric field simulations. We found that a physical mechanism of increasing DP is caused by an interaction between bubbles and an importance of the dielectric permittivity of a liquid mixture on the local enhancement of field intensity. We also discuss detailed physical characteristics, such as plasma lifetime and electron density within the discharge channel, by estimating from measured emissions with a gated-intensified charge-coupled device and by using spectroscopic images, respectively.