Ahmad Mozaffari
University of Waterloo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ahmad Mozaffari.
International Journal of Bio-inspired Computation | 2012
Ahmad Mozaffari; Mofid Gorji-Bandpy; Tahereh B. Gorji
In the current investigation, a new optimisation technique called mutable smart bee algorithm (MSBA) is used for optimal design of real-life engineering systems that are subjected to different types of constraints. MSBA is a memory-based diversified optimisation technique that hires mutable smart bee (MSB) instead of conventional bee. MSB heuristic agents are capable of maintaining their historical memory for the location and quality of food sources and also a little chance of mutation is considered for them. Exerted experiments reveal that these features are really effective for optimising multi-modal constraint problems. To elaborate on the authenticity of MSBA, obtained results are compared to state-of-the-art optimisation techniques.
Applied Soft Computing | 2014
Alireza Fathi; Ahmad Mozaffari
The purpose of current investigation is to engage two efficient evolvable neuro-evolutionary machines to identify a nonlinear dynamic model for a shape memory alloy (SMA) actuator. SMA materials are kind of smart materials capable of compensating any undergo plastic deformations and return to their memorized shape. This fascinating trait gives them versatility to be applied on different engineering applications such as smart actuators and sensors. As a result, modeling and analyzing of their response is an essential task to researchers. Nevertheless, these materials have intricate behaviors that incorporate the modeling with major dilemma and obstacles. In this research, two novel evolvable machines comprised recurrent neural network (RNN) and two novel hybrid heuristic methods nominally cellular automate and Kohonen map assisted versions of The Great Salmon Run (CTGSR and KTGSR respectively) optimization algorithm are developed to find a robust, representative and reliable recursive identification framework capable of modeling the proposed SMA actuator. To elaborate on the acceptable performance of proposed systems, several experimental tests are carried out. Obtained results reveal the promising potential of the evolvable frameworks for modeling the behavior of SMA as a complex real world engineering system. Furthermore, by executing some comparative tests, the authors indicate that both of their proposed hybrid heuristic algorithms outperform the sole version of TGSR as well as some other well-known evolutionary algorithms.
Journal of Intelligent Manufacturing | 2014
Alireza Fathi; Ahmad Mozaffari
The purpose of current investigation is to develop a robust intelligent framework to achieve efficient and reliable operating process parameters for laser solid freeform fabrication (LSFF) process as a recent and ongoing topic of investigation. Firstly, based on mutable smart bee algorithm (MSBA) and fuzzy inference system (FIS) two models are developed to identify the clad hight (deposited layer thickness) and the melt pool depth as functions of scanning speed, laser power and mass powder. Using the obtained model, the well-known multiobjective evolutionary algorithm called non-dominated sorting genetic algorithm (NSGA-II) is used for multi-criterion optimization of LSFF process. According to the available reported information and also the author’s experiments, it is observed that the obtained Pareto front is not justifiable since it fails to cover the entire Pareto hyper-volume due to the lack of intensified exploration. To tackle this deficiency, authors execute a post optimization process through utilizing a competitive unsupervised machine learning approach known as self-organizing map (SOM) with cubic spatial topology. Achieved results indicate that this grid based network is capable of enhancing the intensification of Pareto solutions since its synaptic weights successfully imitate the characteristics of non-dominated solutions (optimal values of mass powder, laser power and scanning speed). For extracting the corresponding objective functions of these non-dominated synaptic weights, MSBA–FIS is used again to map the operating parameters to objective functions space. After the termination of abovementioned procedures, a valuable archive, containing a set of non-dominated solutions, is obtained which lets the authors to make a deliberate engineering trade-off. Simulation experiments reveal that the proposed intelligent framework is highly capable to cope with complex engineering systems. Besides, it is observed that MSBA is more efficient in evolving the structure of hierarchical fuzzy inference system in comparison with classic hierarchical GA-FIS model. This rises from the simple structure of MSBA that turns it into a fast and robust algorithm for handling constraint distributed systems (i.e. hierarchical FIS in current investigation). The obtained results also indicate that the introduced intelligent framework is applicable for optimal design of complex engineering systems where there exists no analytical formulation that describes the phenomenon as well as information of optimal operating parameters.
Swarm and evolutionary computation | 2013
Ahmad Mozaffari; Abas Ramiar; Alireza Fathi
Abstract In this article, an improved version of Artificial Bee Colony (ABC) algorithm is developed to optimize a multi-modal thermodynamic power system with dynamic specific heat. Since original Karabogas ABC for constraint problems does not consider the initial population to be feasible, a modified method called “Mutable Smart Bee Algorithm” (MSBA) is used which utilizes mutable heuristic agents. These mutable agents are also capable to maintain their historical memory for the location and quality of food sources. These features have been found as strong elements for mining data in constraint areas. In additions, our implementations reveal that MSBA is faster than Karabogas method. To elaborate on authenticity of MSBA, several state-of-the-art techniques are used as rival methods to optimize well-known benchmark problems. Then, two main steps are made to optimize Atkinson engine. Firstly, an Adaptive Neuro-Fuzzy Inference System (ANFIS) is developed to identify the dynamic behavior of specific heat. Then, MSBA is hired to design the optimum features of the engine. It is observed that the proposed method is capable to successfully handle the real-life engineering problem as well as the numerical benchmark problems.
Applied Soft Computing | 2013
Ahmad Mozaffari; Alireza Fathi; Amir Khajepour; Ehsan Toyserkani
With the rapid growth of laser applications and the introduction of high efficiency lasers (e.g. fiber lasers), laser material processing has gained increasing importance in a variety of industries. Among the applications of laser technology, laser cladding has received significant attention due to its high potential for material processing such as metallic coating, high value component repair, prototyping, and even low-volume manufacturing. In this paper, two optimization methods have been applied to obtain optimal operating parameters of Laser Solid Freeform Fabrication Process (LSFF) as a real world engineering problem. First, Particle Swarm Optimization (PSO) algorithm was implemented for real-time prediction of melt pool geometry. Then, a hybrid evolutionary algorithm called Self-organizing Pareto based Evolutionary Algorithm (SOPEA) was proposed to find the optimal process parameters. For further assurance on the performance of the proposed optimization technique, it was compared to some well-known vector optimization algorithms such as Non-dominated Sorting Genetic Algorithm (NSGA-II) and Strength Pareto Evolutionary Algorithm (SPEA 2). Thereafter, it was applied for simultaneous optimization of clad height and melt pool depth in LSFF process. Since there is no exact mathematical model for the clad height (deposited layer thickness) and the melt pool depth, the authors developed two Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to estimate these two process parameters. Optimization procedure being done, the archived non-dominated solutions were surveyed to find the appropriate ranges of process parameters with acceptable dilutions. Finally, the selected optimal ranges were used to find a case with the minimum rapid prototyping time. The results indicate the acceptable potential of evolutionary strategies for controlling and optimization of LSFF process as a complicated engineering problem.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy | 2012
Ahmad Mozaffari; Mofid Gorji-Bandpy; Pendar Samadian; Sina Mohammadrezaei Noudeh
In recent decades, analyzing and optimizing thermal systems have become of great interest to researchers. Recently, the engineers concentrated on variant concepts of artificial intelligence such as machine learning, simulation, fuzzy logic, game theory, and evolutionary computing to deal with complicated barriers and obstacles. Artificial intelligence and expert system techniques play an important role for surveying and controlling mechanical systems such as power plants and reservoirs. This is because of their interdisciplinary applications and versatile servicing potential in mathematical modeling of industrial systems. In this article, a new method called synchronous parallel shuffling self-organized Pareto strategy algorithm is presented which synthesizes different artificial techniques, nominally evolutionary computing, swarm intelligence techniques, and time adaptive self-organizing map that apply simultaneously incorporating with a stochastic data sharing behavior. Thereafter, it is applied to verify the optimum operating parameter of Damavand power plant as the biggest constructed power plant in Middle East with the potential of producing about 2300 MW electricity sited in Tehran, capital of Iran, as a multi-objective, multi-modal complex problem. It is also proved that implementing the governing equations of power plant leads to a multi-objective problem where some of these objectives are non-linear, non-convex, and multi-modal with different type of real-life engineering constraints. The results confirm the acceptable performance of proposed technique in optimizing the operating parameters of Damavand power plant.
Neurocomputing | 2015
Ahmad Mozaffari; Mahyar Vajedi; Nasser L. Azad
Abstract In this investigation, an advanced modeling method, called online sequential extreme learning machine with a hyper-level fault tolerance-based supervisor (OSELM–FTS), is utilized to develop a robust safety-oriented autonomous cruise control based on the model predictive control (MPC) technique. The resulting MPC-based cruise controller is used to improve the driving safety and reduce the energy consumption of an electric vehicle (EV). The structural flexibility of OSELM–FTS allows us to not only improve the operating features of the EV, but also develop an intelligent supervisor which can detect any operating fault and send proper commands for the adaption of the MPC controller. This introduces a degree of robustness to the devised controller, as OSELM–FTS automatically detects and filters any operating faults which may undermine the performance of the MPC controller. To ascertain the veracity of the devised controller, three well-known MPC formulations, i.e. linear MPC (LMPC) and nonlinear MPC (NMPC) and diagonal recurrent neural network MPC (DRNN-MPC), are applied to the baseline EV and their performances are compared with OSELM–FTS-MPC. To further elaborate on the computational advantages of OSELM, a well-known chunk-by-chunk incremental machine learning approach, namely selective negative correlation learning (SNCL), is taken into account. The results of the comparative study indicate that OSELM–FTS-MPC is a very promising control scheme and can be reliably used for safety-oriented autonomous cruise control of the EVs.
Swarm and evolutionary computation | 2013
Ahmad Mozaffari; Mofid Gorji-Bandpy; Pendar Samadian; Rouzbeh Rastgar; Alireza Rezania Kolaei
Abstract Optimizing and controlling of complex engineering systems is a phenomenon that has attracted an incremental interest of numerous scientists. Until now, a variety of intelligent optimizing and controlling techniques such as neural networks, fuzzy logic, game theory, support vector machines and stochastic algorithms were proposed to facilitate controlling of the engineering systems. In this study, an extended version of mutable smart bee algorithm (MSBA) called Pareto based mutable smart bee (PBMSB) is inspired to cope with multi-objective problems. Besides, a set of benchmark problems and four well-known Pareto based optimizing algorithms i.e. multi-objective bee algorithm (MOBA), multi-objective particle swarm optimization (MOPSO) algorithm, non-dominated sorting genetic algorithm (NSGA-II), and strength Pareto evolutionary algorithm (SPEA 2) are utilized to confirm the acceptable performance of the proposed method. In order to find the maximum exploration potentials, these techniques are equipped with an external archive. These archives aid the methods to record all of the non-dominated solutions. Eventually, the proposed method and generalized regression neural network (GRNN) are simultaneously used to optimize the major parameters of an irreversible thermal engine. In order to direct the PBMSB to explore deliberate spaces within the solution domain, a reference point obtained from finite time thermodynamic (FTT) approach, is utilized in the optimization. The outcome results show the acceptable performance of the proposed method to optimize complex real-life engineering systems.
Journal of Computational Science | 2014
Ahmad Mozaffari; Mohammadreza Azimi; Mofid Gorji-Bandpy
Abstract The aim of the current study is to probe the potentials of ensemble bio-inspired approaches to handle the deficiencies associated with designing large scale power systems. Ensemble computing has been proven to be a very promising paradigm. The fundamental motivation behind designing such bio-inspired optimization models lies in the fact that interactions among different sole optimizers can afford much better income as compared with an individual optimizer. To do so, the authors propose an optimization technique called ensemble mutable smart bee algorithm (E-MSBA) which is based on the aggregation of several independent low-level optimizers. Here, each low-level unit of the proposed ensemble framework uses mutable smart bee algorithm (MSBA) for optimization procedure. The main provocations behind selecting MSBAs of different properties as components of ensemble are twofold. On the one hand, MSBA proved its capability for handling multimodal constraint problems. On the other hand, based on different experiments, it was demonstrated that MSBA can find the optimum solution with a relatively low computational cost. In this study, the authors intend to indicate that the proposed ensemble paradigm can efficiently optimize the operating parameters of a large scale power system which includes different mechanical components. To this end, E-MSBA and some rival methods are taken into account for the optimization procedure. The obtained results reveal that E-MSBA inherits some positive features of the MSBA algorithm. Additionally, it is observed that the ensembling approach enables the proposed method to effectively tackle the flaws associated with optimization of large scale problems.
International Journal of Intelligent Computing and Cybernetics | 2013
Alireza Fathi; Ahmad Mozaffari
Purpose – The purpose of the current investigation is to design a robust and reliable computational framework to effectively identify the nonlinear behavior of shape memory alloy (SMA) actuators, as one of the most applicable types of actuators in engineering and industry. The motivation of proposing such an intelligent paradigm emanates in the pursuit of fulfilling the necessity of devising a simple yet effective identification system capable of modeling the hysteric dynamical respond of SMA actuators. Design/methodology/approach – To address the requirements of designing a pragmatic identification system, the authors integrate a set of fast yet reliable intelligent methodologies and provide a predictive tool capable of realizing the nonlinear hysteric behavior of SMA actuators in a computationally efficient fashion. First, the authors utilize the governing equations to design a gray box Hammerstein-Wiener identifier model. At the next step, they adopt a computationally efficient metaheuristic algorithm ...