Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmad Rafsanjani is active.

Publication


Featured researches published by Ahmad Rafsanjani.


Advanced Materials | 2015

Snapping Mechanical Metamaterials under Tension

Ahmad Rafsanjani; A.H. Akbarzadeh; Damiano Pasini

A snapping mechanical metamaterial is designed, which exhibits a sequential snap-through behavior under tension. The tensile response of this mechanical metamaterial can be altered by tuning the architecture of the snapping segments to achieve a range of nonlinear mechanical responses, including monotonic, S-shaped, plateau, and non-monotonic snap-through behavior.


Physical Review Letters | 2017

Buckling-Induced Kirigami

Ahmad Rafsanjani; Katia Bertoldi

We investigate the mechanical response of thin sheets perforated with a square array of mutually orthogonal cuts, which leaves a network of squares connected by small ligaments. Our combined analytical, experimental and numerical results indicate that under uniaxial tension the ligaments buckle out of plane, inducing the formation of 3D patterns whose morphology is controlled by the load direction. We also find that by largely stretching the buckled perforated sheets, plastic strains develop in the ligaments. This gives rise to the formation of kirigami sheets comprising periodic distribution of cuts and permanent folds. As such, the proposed buckling-induced pop-up strategy points to a simple route for manufacturing complex morphable structures out of flat perforated sheets.


Scientific Reports | 2015

Hydro-Responsive Curling of the Resurrection Plant Selaginella lepidophylla

Ahmad Rafsanjani; Véronique Brulé; Tamara L. Western; Damiano Pasini

The spirally arranged stems of the spikemoss Selaginella lepidophylla, an ancient resurrection plant, compactly curl into a nest-ball shape upon dehydration. Due to its spiral phyllotaxy, older outer stems on the plant interlace and envelope the younger inner stems forming the plant centre. Stem curling is a morphological mechanism that limits photoinhibitory and thermal damages the plant might experience in arid environments. Here, we investigate the distinct conformational changes of outer and inner stems of S. lepidophylla triggered by dehydration. Outer stems bend into circular rings in a relatively short period of desiccation, whereas inner stems curl slowly into spirals due to hydro-actuated strain gradient along their length. This arrangement eases both the tight packing of the plant during desiccation and its fast opening upon rehydration. The insights gained from this work shed light on the hydro-responsive movements in plants and might contribute to the development of deployable structures with remarkable shape transformations in response to environmental stimuli.


Philosophical Magazine | 2012

Hygromorphic behaviour of cellular material: hysteretic swelling and shrinkage of wood probed by phase contrast X-ray tomography

Dominique Derome; Ahmad Rafsanjani; Alessandra Patera; Robert A. Guyer; Jan Carmeliet

Wood is a hygromorphic material, meaning it responds to changes in environmental humidity by changing its geometry. Its cellular biological structure swells during wetting and shrinks during drying. The origin of the moisture-induced deformation lies at the sub-cellular scale. The cell wall can be considered a composite material with stiff cellulose fibrils acting as reinforcement embedded in a hemicellulose/lignin matrix. The bulk of the cellulose fibrils, forming 50% of the cell wall, are oriented longitudinally, forming long-pitched helices. Both components of cell wall matrix are displaying swelling. Moisture sorption and, to a lesser degree, swelling/shrinkage are known to be hysteretic. We quantify the affine strains during the swelling and shrinkage using high resolution images obtained by phase contrast synchrotron X-ray tomography of wood samples of different porosities. The reversibility of the swelling/shrinkage is found for samples with controlled moisture sorption history. The deformation is more hysteretic for high than for low density samples. Swelling/shrinkage due to ad/desorption of water vapour displays also a non-affine component. The reversibility of the swelling/shrinkage indicates that the material has a structural capacity to show a persistent cellular geometry for a given moisture state and a structural composition that allows for moisture-induced transitional states. A collection of qualitative observations of small subsets of cells during swelling/shrinkage is further studied by simulating the observed behaviour. An anisotropic swelling coefficient of the cell wall is found to emerge and its origin is linked to the anisotropy of the cellulose fibrils arrangement in cell wall layers.


Extreme Mechanics Letters | 2016

Bistable Auxetic Mechanical Metamaterials Inspired by Ancient Geometric Motifs

Ahmad Rafsanjani; Damiano Pasini

Abstract Auxetic materials become thicker rather than thinner when stretched, exhibiting an unusual negative Poisson’s ratio well suited for designing shape transforming metamaterials. Current auxetic designs, however, are often monostable and cannot maintain the transformed shape upon load removal. Here, inspired by ancient geometric motifs arranged in square and triangular grids, we introduce a class of switchable architected materials exhibiting simultaneous auxeticity and structural bistability. The material concept is experimentally realized by perforating various cut motifs into a sheet of rubber, thus creating a network of rotating units connected with compliant hinges. The metamaterial performance is assessed through mechanical testing and accurately predicted by a coherent set of finite element simulations. A discussion on a rich set of mechanical phenomena follows to shed light on the main design principles governing bistable auxetics.


Journal of the Royal Society Interface | 2014

Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy.

Ahmad Rafsanjani; Michael Stiefel; Konstantins Jefimovs; Rajmund Mokso; Dominique Derome; Jan Carmeliet

We document the hygroscopic swelling and shrinkage of the central and the thickest secondary cell wall layer of wood (named S2) in response to changes in environmental humidity using synchrotron radiation-based phase contrast X-ray tomographic nanoscopy. The S2 layer is a natural fibre-reinforced nano-composite polymer and is strongly reactive to water. Using focused ion beam, micropillars with a cross section of few micrometres are fabricated from the S2 layer of the latewood cell walls of Norway spruce softwood. The thin neighbouring cell wall layers are removed to prevent hindering or restraining of moisture-induced deformation during swelling or shrinkage. The proposed experiment intended to get further insights into the microscopic origin of the anisotropic hygro-expansion of wood. It is found that the swelling/shrinkage strains are highly anisotropic in the transverse plane of the cell wall, larger in the normal than in the direction parallel to the cell walls thickness. This ultrastructural anisotropy may be due to the concentric lamellation of the cellulose microfibrils as the role of the cellulose microfibril angle in the transverse swelling anisotropy is negligible. The volumetric swelling of the cell wall material is found to be substantially larger than the one of wood tissues within the growth ring and wood samples made of several growth rings. The hierarchical configuration in wood optimally increases its dimensional stability in response to a humid environment with higher scales of complexity.


Plant Science | 2016

Hierarchies of plant stiffness

Véronique Brulé; Ahmad Rafsanjani; Damiano Pasini; Tamara L. Western

Plants must meet mechanical as well as physiological and reproductive requirements for survival. Management of internal and external stresses is achieved through their unique hierarchical architecture. Stiffness is determined by a combination of morphological (geometrical) and compositional variables that vary across multiple length scales ranging from the whole plant to organ, tissue, cell and cell wall levels. These parameters include, among others, organ diameter, tissue organization, cell size, density and turgor pressure, and the thickness and composition of cell walls. These structural parameters and their consequences on plant stiffness are reviewed in the context of work on stems of the genetic reference plant Arabidopsis thaliana (Arabidopsis), and the suitability of Arabidopsis as a model system for consistent investigation of factors controlling plant stiffness is put forward. Moving beyond Arabidopsis, the presence of morphological parameters causing stiffness gradients across length-scales leads to beneficial emergent properties such as increased load-bearing capacity and reversible actuation. Tailoring of plant stiffness for old and new purposes in agriculture and forestry can be achieved through bioengineering based on the knowledge of the morphological and compositional parameters of plant stiffness in combination with gene identification through the use of genetics.


Journal of Building Physics | 2013

The role of water in the behavior of wood

Dominique Derome; Ahmad Rafsanjani; Stefan Hering; Martin Dressler; Alessandra Patera; Christian Lanvermann; Marjan Sedighi-Gilani; Falk K. Wittel; Peter Niemz; Jan Carmeliet

Wood, due to its biological origin, has the capacity to interact with water. Sorption/desorption of moisture is accompanied with swelling/shrinkage and softening/hardening of its stiffness. The correct prediction of the behavior of wood components undergoing environmental loading requires that the moisture behavior and mechanical behavior of wood are considered in a coupled manner. We propose a comprehensive framework using a fully coupled poromechanical approach, where its multiscale implementation provides the capacity to take into account, directly, the exact geometry of the wood cellular structure, using computational homogenization. A hierarchical model is used to take into account the subcellular composite-like organization of the material. Such advanced modeling requires high-resolution experimental data for the appropriate determination of inputs and for its validation. High-resolution x-ray tomography, digital image correlation, and neutron imaging are presented as valuable methods to provide the required information.


Applied Physics Letters | 2013

Swelling of cellular solids: From conventional to re-entrant honeycombs

Ahmad Rafsanjani; Dominique Derome; Robert A. Guyer; Jan Carmeliet

We find that, in two-dimensional periodic cellular solids, the hygro-expansion properties of the cell wall and the geometrical configurations of the lattice determine the effective swelling behavior of the medium. In this letter, we present the associated phase diagram for the swelling anisotropy of conventional and re-entrant honeycomb morphologies. The presented results are obtained numerically from a finite element based computational upscaling scheme. We show how the pattern of anisotropy in swelling behavior of cellular materials reverses when swelling is more important across or along the cell walls.


Science Robotics | 2018

Kirigami skins make a simple soft actuator crawl

Ahmad Rafsanjani; Yuerou Zhang; Bangyuan Liu; Shmuel M. Rubinstein; Katia Bertoldi

Highly stretchable kirigami flat sheets transform into 3D-textured surfaces and facilitate crawling. Bioinspired soft machines made of highly deformable materials are enabling a variety of innovative applications, yet their locomotion typically requires several actuators that are independently activated. We harnessed kirigami principles to significantly enhance the crawling capability of a soft actuator. We designed highly stretchable kirigami surfaces in which mechanical instabilities induce a transformation from flat sheets to 3D-textured surfaces akin to the scaled skin of snakes. First, we showed that this transformation was accompanied by a dramatic change in the frictional properties of the surfaces. Then, we demonstrated that, when wrapped around an extending soft actuator, the buckling-induced directional frictional properties of these surfaces enabled the system to efficiently crawl.

Collaboration


Dive into the Ahmad Rafsanjani's collaboration.

Top Co-Authors

Avatar

Dominique Derome

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra Patera

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Konstantins Jefimovs

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Robert A. Guyer

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge