Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmad Raza Khan is active.

Publication


Featured researches published by Ahmad Raza Khan.


NeuroImage | 2016

Biophysical modeling of high field diffusion MRI demonstrates micro-structural aberration in chronic mild stress rat brain.

Ahmad Raza Khan; Andrey Chuhutin; Ove Wiborg; Christopher D. Kroenke; Jens R. Nyengaard; Brian Hansen; Sune Nørhøj Jespersen

Depression is one of the leading causes of disability worldwide. Immense heterogeneity in symptoms of depression causes difficulty in diagnosis, and to date, there are no established biomarkers or imaging methods to examine depression. Unpredictable chronic mild stress (CMS) induced anhedonia is considered to be a realistic model of depression in studies of animal subjects. Stereological and neuronal tracing techniques have demonstrated persistent remodeling of microstructure in hippocampus, prefrontal cortex and amygdala of CMS brains. Recent developments in diffusion MRI (d-MRI) analyses, such as neurite density and diffusion kurtosis imaging (DKI), are able to capture microstructural changes and are considered to be robust tools in preclinical and clinical imaging. The present study utilized d-MRI analyzed with a neurite density model and the DKI framework to investigate microstructure in the hippocampus, prefrontal cortex, caudate putamen and amygdala regions of CMS rat brains by comparison to brains from normal controls. To validate findings of CMS induced microstructural alteration, histology was performed to determine neurite, nuclear and astrocyte density. d-MRI based neurite density and tensor-based mean kurtosis (MKT) were significantly higher, while mean diffusivity (MD), extracellular diffusivity (Deff) and intra-neurite diffusivity(DL) were significantly lower in the amygdala of CMS rat brains. Deff was also significantly lower in the hippocampus and caudate putamen in stressed groups. Histological neurite density corroborated the d-MRI findings in the amygdala and reductions in nuclear and astrocyte density further buttressed the d-MRI results. The present study demonstrated that the d-MRI based neurite density and MKT can reveal specific microstructural changes in CMS rat brains and these parameters might have value in clinical diagnosis of depression and for evaluation of treatment efficacy.


NMR in Biomedicine | 2017

White matter biomarkers from fast protocols using axially symmetric diffusion kurtosis imaging

Brian Benjamin Hansen; Ahmad Raza Khan; Noam Shemesh; Torben E. Lund; Ryan Sangill; Simon Fristed Eskildsen; Leif Østergaard; Sune Nørhøj Jespersen

White matter tract integrity (WMTI) can characterize brain microstructure in areas with highly aligned fiber bundles. Several WMTI biomarkers have now been validated against microscopy and provided promising results in studies of brain development and aging, as well as in a number of brain disorders. Currently, WMTI is mostly used in dedicated animal studies and clinical studies of slowly progressing diseases, and has not yet emerged as a routine clinical tool. To this end, a less data intensive experimental method would be beneficial by enabling high resolution validation studies, and ease clinical applications by speeding up data acquisition compared with typical diffusion kurtosis imaging (DKI) protocols utilized as part of WMTI imaging.


Journal of Applied Toxicology | 2013

Differential biochemical response of rat kidney towards low and high doses of NiCl2 as revealed by NMR spectroscopy

Ritu Tyagi; Poonam Rana; Mamta Gupta; Ahmad Raza Khan; Deepak Bhatnagar; P. J. S. Bhalla; Shubhra Chaturvedi; Rajendra P. Tripathi; Subash Khushu

Heavy metals are known for their associated nephrotoxicity and nickel is no exception. An integrated metabonomic approach, based on high‐resolution 1H NMR spectroscopy, was applied to determine the acute biochemical effects of NiCl2 on the renal tissues of rats. Kidney homogenates from rats treated with NiCl2 at two dose levels (4 and 20 mg kg−1 b.w., i.p.) and those from controls were analysed using 1H NMR spectroscopy and also assessed for antioxidant parameters at days 1, 3 and 5 post‐dose. The major metabolite changes corresponding to nickel exposure were related to amino acids, osmolytes and energy metabolites. Differential responses were observed in 1H NMR spectra with exposure to low and high doses of NiCl2. For high doses, 1H NMR spectral analysis revealed alterations in renal tissues, along with damage to the cortical and papillary region and depletion of renal osmolytes such as betaine, trimethyl amine oxide, myo‐inositol and taurine, which persisted until day 5 post‐dose. The metabolite profile of 1H NMR spectra obtained from animals treated with lower dose of NiCl2 initially increased as an immediate stress response and then showed signs of recovery with the passage of time. NMR spectral analysis was well corroborated with histopathological and oxidative stress results. Nickel‐induced oxidative stress was observed in both groups of animals with increased levels of antioxidant parameters at initial time points, but continued to increase in the high‐dose group. The present study shows a huge potential of metabonomics for mapping organ‐based metabolic response during heavy metal toxicity. Copyright


NMR in Biomedicine | 2013

Comparative evaluation of brain neurometabolites and DTI indices following whole body and cranial irradiation: a magnetic resonance imaging and spectroscopy study

Mamta Gupta; Poonam Rana; Richa Trivedi; B.S. Hemanth Kumar; Ahmad Raza Khan; Ravi Soni; Ram Ks Rathore; Subash Khushu

Understanding early differential response of brain during whole body radiation or cranial radiation exposure is of significant importance for better injury management during accidental or intentional exposure to ionizing radiation. We investigated the early microstructural and metabolic profiles using in vivo diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy (1H MRS) following whole body and cranial radiation exposure of 8 Gy in mice using a 7.0 T animal MRI system and compared profiles with sham controls at days 1, 3, 5 and 10 post irradiation. A significant decrease in fractional anisotropy (FA) values was found in hippocampus, thalamic and hypothalamic regions (p < 0.05) in both whole body and cranial irradiated groups compared with controls, suggesting radiation induced reactive astrogliosis or neuroinflammatory response. In animals exposed to whole body radiation, FA was significantly decreased in some additional brain regions such as sensory motor cortex and corpus callosum in comparison with cranial irradiation groups and controls. Changes in FA were observed till day 10 post irradiation in both the groups. However, MRS study from hippocampus revealed changes only in the whole body radiation dose group. Significant reduction in the ratios of the metabolites myoinositol (mI, p = 0.02) and taurine (tau, p = 0.03) to total creatine were observed, and these metabolic alterations persisted till day 10 post irradiation. To the best of our knowledge this study has for the first time documented a comparative account of microstructural and metabolic aspects of whole body and cranial radiation induced early brain injury using in vivo MRI. Overall our findings suggest differential response at microstructure and metabolite levels following cranial or whole body radiation exposure. Copyright


NMR in Biomedicine | 2016

Fast diffusion kurtosis imaging of fibrotic mouse kidneys

B.F. Kjølby; Ahmad Raza Khan; Andrey Chuhutin; Lea Pedersen; Jonas Jensen; Steen Jakobsen; D. Zeidler; Ryan Sangill; Jens R. Nyengaard; Sune Nørhøj Jespersen; Brian Benjamin Hansen

Diffusion kurtosis imaging (DKI) is sensitive to tissue microstructure and may therefore be useful in the diagnosis and monitoring of disease in brain and body organs. Generally, diffusion magnetic resonance imaging (dMRI) in the body is challenging because of the heterogeneous body composition, which can cause image artefacts as a result of chemical shifts and susceptibility differences. In addition, the abdomen possesses physiological factors (e.g. breathing, heartbeat, blood flow) which may severely reduce image quality, especially when echo planar imaging is employed, as is typical in dMRI. Collectively, these challenging measurement conditions impede the use and exploration of DKI in the body. This impediment is further exacerbated by the traditionally large amount of data required for DKI and the low signal‐to‐noise ratio at the b‐values needed to effectively probe the kurtosis regime. Recently introduced fast DKI techniques reduce the challenge of DKI in the body by decreasing the data requirement substantially, so that, for example, triggering and breath‐hold techniques may be applied for the entire DKI acquisition without causing unfeasible scan times. One common pathological condition for which body DKI may be of immediate clinical value is kidney fibrosis, which causes progressive changes in organ microstructure. With its sensitivity to microstructure, DKI is an obvious candidate for a non‐invasive evaluation method. We present preclinical evidence indicating that the rapidly obtainable tensor‐derived mean kurtosis ( W̅ ) distinguishes moderately fibrotic kidneys from healthy controls. The presence and degree of fibrosis are confirmed by histology, which also indicates fibrosis as the main driver behind the DKI differences observed between groups. We therefore conclude that fast kurtosis is a likely candidate for an MRI‐based method for the detection and monitoring of renal fibrosis. We provide protocol recommendations for fast renal DKI in humans based on a b‐value optimisation performed using data acquired at 3 T in normal human kidney.


Data in Brief | 2016

Summary of high field diffusion MRI and microscopy data demonstrate microstructural aberration in chronic mild stress rat brain

Ahmad Raza Khan; Andrey Chuhutin; Ove Wiborg; Christopher D. Kroenke; Jens R. Nyengaard; Brian Hansen; Sune Nørhøj Jespersen

This data article describes a large, high resolution diffusion MRI data set from fixed rat brain acquired at high field strength. The rat brain samples consist of 21 adult rat brain hemispheres from animals exposed to chronic mild stress (anhedonic and resilient) and controls. Histology from amygdala of the same brain hemispheres is also included with three different stains: DiI and Hoechst stained microscopic images (confocal microscopy) and ALDH1L1 antibody based immunohistochemistry. These stains may be used to evaluate neurite density (DiI), nuclear density (Hoechst) and astrocytic density (ALDH1L1). This combination of high field diffusion data and high resolution images from microscopy enables comparison of microstructural parameters derived from diffusion MRI to histological microstructure. The data provided here is used in the article (Jespersen, 2016) [1].


NeuroImage | 2018

Diffusion MRI and MR spectroscopy reveal microstructural and metabolic brain alterations in chronic mild stress exposed rats: A CMS recovery study

Ahmad Raza Khan; Brian Hansen; Ove Wiborg; Christopher D. Kroenke; Sune Nørhøj Jespersen

&NA; Chronic mild stress (CMS) induced depression elicits several debilitating symptoms and causes a significant economic burden on society. High variability in the symptomatology of depression poses substantial impediment to accurate diagnosis and therapy outcome. CMS exposure induces significant metabolic and microstructural alterations in the hippocampus (HP), prefrontal cortex (PFC), caudate‐putamen (CP) and amygdala (AM), however, recovery from these maladaptive changes are limited and this may provide negative effects on the therapeutic treatment and management of depression. The present study utilized anhedonic rats from the unpredictable CMS model of depression to study metabolic recovery in the ventral hippocampus (vHP) and microstructural recovery in the HP, AM, CP, and PFC. The study employed 1H MR spectroscopy (1H MRS) and in‐vivo diffusion MRI (d‐MRI) at the age of week 18 (week 1 post CMS exposure) week 20 (week 3 post CMS) and week 25 (week 8 post CMS exposure) in the anhedonic group, and at the age of week 18 and week 22 in the control group. The d‐MRI data have provided an array of diffusion tensor metrics (FA, MD, AD, and RD), and fast kurtosis metrics (MKT, WL and WT). CMS exposure induced a significant metabolic alteration in vHP, and significant microstructural alterations were observed in the HP, AM, and PFC in comparison to the age match control and within the anhedonic group. A significantly high level of N‐acetylaspartate (NAA) was observed in vHP at the age of week 18 in comparison to age match control and week 20 and week 25 of the anhedonic group. HP and AM showed significant microstructural alterations up to the age of week 22 in the anhedonic group. PFC showed significant microstructural alterations only at the age of week 18, however, most of the metrics showed significantly higher value at the age of week 20 in the anhedonic group. The significantly increased NAA concentration may indicate impaired catabolism due to astrogliosis or oxidative stress. The significantly increased WL in the AM and HP may indicate hypertrophy of AM and reduced volume of HP. Such metabolic and microstructural alterations could be useful in disease diagnosis and follow‐up treatment intervention in depression and similar disorders.


PLOS ONE | 2018

Differential microstructural alterations in rat cerebral cortex in a model of chronic mild stress depression

Ahmad Raza Khan; Christopher D. Kroenke; Ove Wiborg; Andrey Chuhutin; Jens R. Nyengaard; Brian Benjamin Hansen; Sune Nørhøj Jespersen

Chronic mild stress leads to depression in many cases and is linked to several debilitating diseases including mental disorders. Recently, neuronal tracing techniques, stereology, and immunohistochemistry have revealed persistent and significant microstructural alterations in the hippocampus, hypothalamus, prefrontal cortex, and amygdala, which form an interconnected system known as the stress circuit. Most studies have focused only on this circuit, however, some studies indicate that manipulation of sensory and motor systems may impact genesis and therapy of mood disorders and therefore these areas should not be neglected in the study of brain microstructure alterations in response to stress and depression. For this reason, we explore the microstructural alterations in different cortical regions in a chronic mild stress model of depression. The study employs ex-vivo diffusion MRI (d-MRI) to assess cortical microstructure in stressed (anhedonic and resilient) and control animals. MRI is followed by immunohistochemistry to substantiate the d-MRI findings. We find significantly lower extracellular diffusivity in auditory cortex (AC) of stress groups and a significantly higher fractional anisotropy in the resilient group. Neurite density was not found to be significantly higher in any cortical ROIs in the stress group compared to control, although axonal density is higher in the stress groups. We also report significant thinning of motor cortex (MC) in both stress groups. This is in agreement with recent clinical and preclinical studies on depression and similar disorders where significant microstructural and metabolic alterations were found in AC and MC. Our findings provide further evidence that the AC and MC are sensitive towards stress exposure and may extend our understanding of the microstructural effects of stress beyond the stress circuit of the brain. Progress in this field may provide new avenues of research to help in diagnosis and treatment intervention for depression and related disorders.


Neurochemistry International | 2014

NMR based metabolomics reveals acute hippocampal metabolic fluctuations during cranial irradiation in murine model.

Poonam Rana; Mamta Gupta; Ahmad Raza Khan; B.S. Hemanth Kumar; Raja Roy; Subash Khushu

Cranial irradiation is widely used as a treatment modality or prophylactic treatment in cancer patients, but it is frequently related to neurocognitive impairment in cancer survivors. Though most of radiation-induced changes occur during early and late delayed phase of radiation sickness, recent reports have supported the evidence of impaired neurogenesis within 24-48 h of radiation exposure that may implicate changes in acute phase as well. Inspection of these acute changes could be considered important as they may have long lasting effect on cognitive development and functions. In the present study, (1)H NMR spectroscopy based metabolomic approach was used to obtain comprehensive information of hippocampus metabolic physiology during acute phase of radiation sickness in a mouse model for single dose 8 Gy cranial irradiation. The analysis demonstrated reduced metabolic activity in irradiated animals compared to controls, typically evident in citric acid cycle intermediates, glutamine/glutamate and ketone bodies metabolism thus providing strong indication that the hippocampus is metabolically responsive to radiation exposure. The data suggested reduced glucose utilization, altered intermediary and neurotransmitter metabolism in hippocampus tissue extract. To the best of our knowledge this is the first metabolomic study to document cranial irradiation induced acute metabolic changes using in vitro(1)H NMR spectroscopy.


life science journal | 2017

Early Differential Neurometabolite Response of Hippocampus on Exposure to Graded dose of Whole Body Radiation: An in Vivo 1H MR Spectroscopy Study

Poonam Rana; Ahmad Raza Khan; Mamta Gupta; Subash Khushu

Whole body radiation exposure induced injury may occur during medical or industrial accidents as well as during terrorist radiation exposure scenario. A lot of information is available on alterations in brain function and metabolism post localised cranial irradiation; changes in brain associated with whole body radiation exposure are still limited. The present study has been conducted to assess early differential effect of low and high whole body radiation exposure on hippocampus neurometabolites using in vivo proton magnetic resonance spectroscopy (1H MRS). Hippocampal 1H MRS was carried out in controls (n = 6) and irradiated mice exposed to 3 Gy, 5 Gy, and 8 Gy of radiation (n = 6 in each group) at different time points i.e., day 0, 1, 3, 5 and 10 post irradiation at 7 T MRI system. Quantitative assessment of the neurometabolites was done using LCModel. The results revealed significant decrease in myoionisitol (mI)/creatine (tCr) and taurine (tau)/tCr in animals exposed to 5 Gy and 8 Gy dose compared to controls. In 3 Gy dose group, none of the metabolites showed significant alterations at any of the time point post irradiation as compared to controls. Overall our findings suggest differential change in hippocampal volume regulatory mechanism associated neuro-metabolites following whole body radiation exposure with maximum reduction in case of high dose group. We speculate that these alterations may be a consequence of oxidative stress, neuro inflammation or systemic inflammatory response following whole body radiation exposure.

Collaboration


Dive into the Ahmad Raza Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Poonam Rana

Defence Research and Development Organisation

View shared research outputs
Top Co-Authors

Avatar

Subash Khushu

Defence Research and Development Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B.S. Hemanth Kumar

Defence Research and Development Organisation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge