Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmed A. Heikal is active.

Publication


Featured researches published by Ahmed A. Heikal.


Nature | 1999

Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication

Brian H. Cumpston; Sundaravel Ananthavel; Stephen Barlow; Daniel L. Dyer; Jeffrey E. Ehrlich; Lael L. Erskine; Ahmed A. Heikal; Stephen M. Kuebler; I.-Y. Sandy Lee; Dianne McCord-Maughon; Jinqui Qin; Harald Röckel; Mariacristina Rumi; Xiang-Li Wu; Seth R. Marder; Joseph W. Perry

Two-photon excitation provides a means of activating chemical or physical processes with high spatial resolution in three dimensions and has made possible the development of three-dimensional fluorescence imaging, optical data storage, and lithographic microfabrication. These applications take advantage of the fact that the two-photon absorption probability depends quadratically on intensity, so under tight-focusing conditions, the absorption is confined at the focus to a volume of order λ3 (where λ is the laser wavelength). Any subsequent process, such as fluorescence or a photoinduced chemical reaction, is also localized in this small volume. Although three-dimensional data storage and microfabrication have been illustrated using two-photon-initiated polymerization of resins incorporating conventional ultraviolet-absorbing initiators, such photopolymer systems exhibit low photosensitivity as the initiators have small two-photon absorption cross-sections (δ). Consequently, this approach requires high laser power, and its widespread use remains impractical. Here we report on a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators. Two-photon excitable resins based on these new initiators have been developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of three-dimensional micro-optical and micromechanical structures, including photonic-bandgap-type structures.


Biophysical Journal | 2002

Two-Photon Fluorescence Spectroscopy and Microscopy of NAD(P)H and Flavoprotein

Shaohui Huang; Ahmed A. Heikal; Watt W. Webb

Two-photon (2P) ratiometric redox fluorometry and microscopy of pyridine nucleotide (NAD(P)H) and flavoprotein (FP) fluorescence, at 800-nm excitation, has been demonstrated as a function of mitochondrial metabolic states in isolated adult dog cardiomyocytes. We have measured the 2P-excitation spectra of NAD(P)H, flavin adenine dinucleotide (FAD), and lipoamide dehydrogenase (LipDH) over the wavelength range of 720-1000 nm. The 2P-excitation action cross sections (sigma2P) increase rapidly at wavelengths below 800 nm, and the maximum sigma2P of LipDH is approximately 5 and 12 times larger than those of FAD and NAD(P)H, respectively. Only FAD and LipDH can be efficiently excited at wavelengths above 800 nm with a broad 2P-excitation band around 900 nm. Two autofluorescence spectral regions (i.e., approximately 410-490 nm and approximately 510-650 nm) of isolated cardiomyocytes were imaged using 2P-laser scanning microscopy. At 750-nm excitation, fluorescence of both regions is dominated by NAD(P)H emission, as indicated by fluorescence intensity changes induced by mitochondrial inhibitor NaCN and mitochondria uncoupler carbonyl cyanide p-(trifluoromethoxy) phenyl hydrazone (FCCP). In contrast, 2P-FP fluorescence dominates at 900-nm excitation, which is in agreement with the sigma2P measurements. Finally, 2P-autofluorescence emission spectra of single cardiac cells have been obtained, with results suggesting potential for substantial improvement of the proposed 2P-ratiometric technique.


Biomarkers in Medicine | 2010

Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies

Ahmed A. Heikal

Mitochondria play a pivotal role in energy metabolism, programmed cell death and oxidative stress. Mutated mitochondrial DNA in diseased cells compromises the structure of key enzyme complexes and, therefore, mitochondrial function, which leads to a myriad of health-related conditions such as cancer, neurodegenerative diseases, diabetes and aging. Early detection of mitochondrial and metabolic anomalies is an essential step towards effective diagnoses and therapeutic intervention. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) play important roles in a wide range of cellular oxidation-reduction reactions. Importantly, NADH and FAD are naturally fluorescent, which allows noninvasive imaging of metabolic activities of living cells and tissues. Furthermore, NADH and FAD autofluorescence, which can be excited using distinct wavelengths for complementary imaging methods and is sensitive to protein binding and local environment. This article highlights recent developments concerning intracellular NADH and FAD as potential biomarkers for metabolic and mitochondrial activities.


Journal of Photochemistry and Photobiology B-biology | 2009

Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level

Qianru Yu; Ahmed A. Heikal

Reduced nicotinamide adenine dinucleotide, NADH, is a major electron donor in the oxidative phosphorylation and glycolytic pathways in cells. As a result, there has been recent resurgence in employing intrinsic NADH fluorescence as a natural probe for a range of cellular processes that include apoptosis, cancer pathology, and enzyme kinetics. Here, we report on two-photon fluorescence lifetime and polarization imaging of intrinsic NADH in breast cancer (Hs578T) and normal (Hs578Bst) cells for quantitative analysis of the concentration and conformation (i.e., free-to-enzyme-bound ratios) of this coenzyme. Two-photon fluorescence lifetime imaging of intracellular NADH indicates sensitivity to both cell pathology and inhibition of the respiratory chain activities using potassium cyanide (KCN). Using a newly developed non-invasive assay, we estimate the average NADH concentration in cancer cells (168+/-49 microM) to be approximately 1.8-fold higher than in breast normal cells (99+/-37 microM). Such analyses indicate changes in energy metabolism and redox reactions in normal breast cells upon inhibition of the respiratory chain activity using KCN. In addition, time-resolved associated anisotropy of cellular autofluorescence indicates population fractions of free (0.18+/-0.08) and enzyme-bound (0.82+/-0.08) conformations of intracellular NADH in normal breast cells. These fractions are statistically different from those in breast cancer cells (free: 0.25+/-0.08; bound: 0.75+/-0.08). Comparative studies on the binding kinetics of NADH with mitochondrial malate dehydrogenase and lactate dehydrogenase in solution mimic our findings in living cells. These quantitative studies demonstrate the potential of intracellular NADH dynamics (rather than intensity) imaging for probing mitochondrial anomalies associated with neurodegenerative diseases, cancer, diabetes, and aging. Our approach is also applicable to other metabolic and signaling pathways in living cells, without the need for cell destruction as in conventional biochemical assays.


Chemical Physics | 2001

Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): acid–base specificity☆

Ahmed A. Heikal; Samuel T. Hess; Watt W. Webb

Green fluorescent protein (GFP), isolated from Aequorea victoria jellyfish, has been used extensively as a noninvasive intracellular pH indicator and site-specific fluorescent marker in biochemistry, cell biology, and molecular genetics. Numerous mutations, aimed at optimizing spectroscopic and thermodynamic properties of GFP, have been created for different applications. Fluorescence correlation spectroscopy (FCS) reveals that the enhanced green fluorescent protein mutant (EGFP; S65T/F64L) undergoes external proton exchange with the buffer on ∼45–300 μs time scale with pKa=5.8±0.1 [Proc. Natl. Acad. Sci. USA 95 (1998) 13573]. This contribution represents a comprehensive characterization of pH and excitation mode (wavelength, one and two photon (2P)) effects on the spectroscopy, excited-state dynamics, and rotational mobility of EGFP aiming at elucidating the significant electronic states of this molecular system. EGFP exhibits a large 2P action cross-section and, therefore, is well suited for intracellular imaging using 2P fluorescence microscopy.


Journal of Chemical Physics | 1990

Real‐time probing of reactions in clusters

J. J. Breen; L. W. Peng; D. M. Willberg; Ahmed A. Heikal; P. Cong; Ahmed H. Zewail

In this Communication we report our first study of real-time reaction dynamics in finite size clusters. The reaction is of the type AH + Sn, where the proton transfer (bimolecular) dynamics is examined as the acid AH is solvated with different number of molecules, n = 1,2,... etc. This is in continuation of out effort to study reaction dynamics in real-time [1], but now extending the scope of the previous collisionless (solvent free) condition to a range where condensed phase effects can play a role. Of particular interest to us is the condition at which solvation induces vibrational relaxation and modifies IVR. Real-time studies of reactions in clusters offer great opportunities for obtaining the rates directly [2] and for examining these solvation processes under controlled conditions in molecular beams. Such stepwise solvation by beam methods has been advanced for a variety of systems spanning small molecules [3], large molecules [4], hydrogen-bonded systems [5], and electrons [6].


Biophysical Journal | 2003

Quantitative Analysis of the Fluorescence Properties of Intrinsically Fluorescent Proteins in Living Cells

Samuel T. Hess; Erin D. Sheets; Alice Wagenknecht-Wiesner; Ahmed A. Heikal

The main potential of intrinsically fluorescent proteins (IFPs), as noninvasive and site-specific markers, lies in biological applications such as intracellular visualization and molecular genetics. However, photophysical studies of IFPs have been carried out mainly in aqueous solution. Here, we provide a comprehensive analysis of the intracellular environmental effects on the steady-state spectroscopy and excited-state dynamics of green (EGFP) and red (DsRed) fluorescent proteins, using both one- and two-photon excitation. EGFP and DsRed are expressed either in the cytoplasm of rat basophilic leukemia (RBL-2H3) mucosal mast cells or anchored (via LynB protein) to the inner leaflet of the plasma membrane. The fluorescence lifetimes (within approximately 10%) and spectra in live cells are basically the same as in aqueous solution, which indicate the absence of both IFP aggregation and cellular environmental effects on the protein folding under our experimental conditions. However, comparative time-resolved anisotropy measurements of EGFP reveal a cytoplasmic viscosity 2.5 +/- 0.3 times larger than that of aqueous solution at room temperature, and also provide some insights into the LynB-EGFP structure and the heterogeneity of the cytoplasmic viscosity. Further, the oligomer configuration and internal depolarization of DsRed, previously observed in solution, persists upon expression in these cells. DsRed also undergoes an instantaneous three-photon induced color change under 740-nm excitation, with efficiently nonradiative green species. These results confirm the implicit assumption that in vitro fluorescence properties of IFPs are essentially valid for in vivo applications, presumably due to the beta-barrel protection of the embodied chromophore. We also discuss the relevance of LynB-EGFP anisotropy for specialized domains studies in plasma membranes.


Physical Chemistry Chemical Physics | 2006

Dynamics imaging of lipid phases and lipid-marker interactions in model biomembranes

Florly S. Ariola; Deepti J. Mudaliar; Ronn P. Walvick; Ahmed A. Heikal

Biomembranes are complex systems that regulate numerous biological processes. Lipid phases that constitute these membranes influence their properties and transport characteristics. Here, we demonstrate the potential of short-range dynamics imaging (excited-state lifetime, rotational diffusion, and order parameter) as a sensitive probe of lipid phases in giant unilamellar vesicles (GUVs). Liquid-disordered and gel phases were labeled with Bodipy-PC at room temperature. Two-photon fluorescence lifetime imaging microscopy of single-phase GUVs reveals more heterogeneity in fluorescence lifetimes of Bodipy in the gel phase (DPPC: 3.8+/-0.6 ns) as compared with the fluid phase (DOPC: 5.2+/-0.2 ns). The phase-specificity of excited-state lifetime of Bodipy-PC is attributed to the stacking of ordered lipid molecules that possibly enhances homo-FRET. Fluorescence polarization anisotropy imaging also reveals distinctive molecular order that is phase specific. The results are compared with DiI-C12-labeled fluid GUVs to investigate the sensitivity of our fluorescence dynamics assay to different lipid-marker interactions. Our results provide a molecular perspective of lipid phase dynamics and the nature of their microenvironments that will ultimately help our understanding of the structure-function relationship of biomembranes in vivo. Furthermore, these ultrafast excited-state dynamics will be used for molecular dynamics simulation of lipid-lipid, lipid-marker and lipid-protein interactions.


Inorganic Chemistry | 2012

Photoinduced charge transfer in short-distance ferrocenylsubphthalocyanine dyads.

Pavlo V. Solntsev; Katelynn L. Spurgin; Jared R. Sabin; Ahmed A. Heikal; Victor N. Nemykin

Two new ferrocenylsubphthalocyanine dyads with ferrocenylmethoxide (2) and ferrocenecarboxylate (3) substituents directly attached to the subphthalocyanine ligand via the axial position have been prepared and characterized using NMR, UV-vis, and magnetic circular dichroism (MCD) spectroscopies as well as X-ray crystallography. The redox properties of the ferrocenyl-containing dyads 2 and 3 were investigated using the cyclic voltammetry (CV) approach and compared to those of the parent subphthalocyanine 1. CV data reveal that the first reversible oxidation is ferrocene-centered, while the second oxidation and the first reduction are localized on the subphthalocyanine ligand. The electronic structures and nature of the optical bands observed in the UV-vis and MCD spectra of all target compounds were investigated by a density functional theory polarized continuum model (DFT-PCM) and time-dependent (TD)DFT-PCM approaches. It has been found that in both dyads the highest occupied molecular orbital (HOMO) to HOMO-2 are ferrocene-centered molecular orbitals, while HOMO-3 as well as lowest unoccupied molecular orbital (LUMO) and LUMO+1 are localized on the subphthalocyanine ligand. TDDFT-PCM data on complexes 1-3 are consistent with the experimental observations, which indicate the dominance of π-π* transitions in the UV-vis spectra of 1-3. The excited-state dynamics of the dyads 2 and 3 were investigated using time-correlated single photon counting, which indicates that fluorescence quenching is more efficient in dyad 3 compared to dyad 2. These fluorescence lifetime measurements were interpreted on the basis of DFT-PCM calculations.


Journal of Biological Chemistry | 2008

Molecular perspective of antigen-mediated mast cell signaling.

Angel M. Davey; Keith M. Krise; Erin D. Sheets; Ahmed A. Heikal

Antigen-mediated cross-linking of the high affinity receptor for IgE (FcϵRI), in the plasma membrane of mast cells, is the first step in the allergic immune response. This event triggers the phosphorylation of specific tyrosines in the cytoplasmic segments of the β and γ subunits of FcϵRI by the Src tyrosine kinase Lyn, which is anchored to the inner leaflet of the plasma membrane. Lyn-induced phosphorylation of FcϵRI occurs in a cholesterol-dependent manner, leading to the hypothesis that cholesterol-rich domains, or “lipid rafts,” may act as functional platforms for IgE receptor signaling. Testing this hypothesis under physiological conditions remains challenging because of the notion that these functional domains are likely transient and much smaller than the diffraction limit of optical microscopy. Here we use ultrafast fluorescence dynamics to investigate the correlation between nanostructural changes in the plasma membrane (labeled with 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine (diI-C18)) and IgE-FcϵRI cross-linking in adherent RBL mast cells stimulated with multivalent antigen. Time-dependent two-photon fluorescence lifetime imaging microscopy of diI-C18 shows changes in lifetime that agree with the kinetics of stimulated tyrosine phosphorylation of FcϵRI, the first identifiable biochemical step of the allergic response, under the same conditions. In addition, two-photon fluorescence lifetime imaging microscopy of Alexa Fluor 488-labeled IgE indicates that Förster resonance energy transfer occurs with diI-C18 in the plasma membrane. Our live cell studies provide direct evidence for the association of IgE-FcϵRI with specialized cholesterol-rich domains within ∼4-nm proximity and with an energy transfer efficiency of 0.22 ± 0.01 at maximal association during IgE receptor signaling.

Collaboration


Dive into the Ahmed A. Heikal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph W. Perry

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seth R. Marder

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Harald Röckel

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dianne McCord-Maughon

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mariacristina Rumi

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Megan Currie

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge