Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmed A. Samatar is active.

Publication


Featured researches published by Ahmed A. Samatar.


Cancer Discovery | 2013

Discovery of a Novel ERK Inhibitor with Activity in Models of Acquired Resistance to BRAF and MEK Inhibitors

Morris Ej; Jha S; Restaino Cr; Priya Dayananth; Hugh Zhu; Alan Cooper; Carr D; Yongqi Deng; Jin W; Stuart Black; Brian Long; Liu J; Dinunzio E; William T. Windsor; Rumin Zhang; Zhao S; Angagaw Mh; Pinheiro Em; Jagdish Desai; Li Xiao; Gerald W. Shipps; Alan Hruza; James Wang; Joseph Kelly; Sunil Paliwal; Xiaolei Gao; Babu Bs; Liang Zhu; Daublain P; Zhang L

The high frequency of activating RAS or BRAF mutations in cancer provides strong rationale for targeting the mitogen-activated protein kinase (MAPK) pathway. Selective BRAF and MAP-ERK kinase (MEK) inhibitors have shown clinical efficacy in patients with melanoma. However, the majority of responses are transient, and resistance is often associated with pathway reactivation of the extracellular signal-regulated kinase (ERK) signaling pathway. Here, we describe the identification and characterization of SCH772984, a novel and selective inhibitor of ERK1/2 that displays behaviors of both type I and type II kinase inhibitors. SCH772984 has nanomolar cellular potency in tumor cells with mutations in BRAF, NRAS, or KRAS and induces tumor regressions in xenograft models at tolerated doses. Importantly, SCH772984 effectively inhibited MAPK signaling and cell proliferation in BRAF or MEK inhibitor-resistant models as well as in tumor cells resistant to concurrent treatment with BRAF and MEK inhibitors. These data support the clinical development of ERK inhibitors for tumors refractory to MAPK inhibitors.


Cancer Biology & Therapy | 2006

Identification of overexpression of orphan G protein-coupled receptor GPR49 in human colon and ovarian primary tumors.

Terrill K. McClanahan; Sandra Koseoglu; Kathleen Smith; Jeffrey Grein; Eric L. Gustafson; Stuart Black; Paul Kirschmeier; Ahmed A. Samatar

We used gene expression profiling to probe differences in transcriptional output between 15 panels of colon tumor and matched normal colon tissues. This analysis revealed that GPR49, an orphan G Protein-Coupled Receptor (GPCR) is over-expressed in 66% (10/15) colon tumors compared with normal colon tissues. Subsequent analysis of an additional 39 sets of matched normal and tumor colon tissues by real-time quantitative reverse transcriptase confirmed the up-regulation of this receptor. The differential expression of GPR49 between normal and tumor tissue was significant (P > 0.001). GPR49 was up-regulated in 25 of 39 (64%) colon primary tumor tissues. In addition to colon tumors, GPR49 was also found to be up-regulated in 18 of 33 (53%) ovarian primary tumor tissues analyzed by RT-PCR. Moreover, the expression level of GPR49 in colon and ovarian tumors increased in more advanced tumors suggesting a role for the receptor in tumor progression. The selective over-expression of GPR49 in tumor tissues was further illustrated by specific immunohistochemical staining of colon and ovarian tumor tissues, a finding that correlates with the mRNA expression of the receptor. In addition, expression of GPR49 induced transformation in a ligand-dependent manner and Knockdown of GPR49 mRNA level induced apoptosis in colon tumor cells. These novel findings provide a foundation for further studies and suggest a potential role for GPR49 in tumorigenesis.


Cancer Cell | 2015

Tunable-Combinatorial Mechanisms of Acquired Resistance Limit the Efficacy of BRAF/MEK Cotargeting but Result in Melanoma Drug Addiction

Gatien Moriceau; Willy Hugo; Aayoung Hong; Hubing Shi; Xiangju Kong; Clarissa C. Yu; Richard C. Koya; Ahmed A. Samatar; Negar Khanlou; Jonathan Braun; Kathleen Ruchalski; Heike Seifert; James Larkin; Kimberly B. Dahlman; Douglas B. Johnson; Alain Patrick Algazi; Jeffrey A. Sosman; Antoni Ribas; Roger S. Lo

Combined BRAF- and MEK-targeted therapy improves upon BRAF inhibitor (BRAFi) therapy but is still beset by acquired resistance. We show that melanomas acquire resistance to combined BRAF and MEK inhibition by augmenting or combining mechanisms of single-agent BRAFi resistance. These double-drug resistance-associated genetic configurations significantly altered molecular interactions underlying MAPK pathway reactivation. (V600E)BRAF, expressed at supraphysiological levels because of (V600E)BRAF ultra-amplification, dimerized with and activated CRAF. In addition, MEK mutants enhanced interaction with overexpressed (V600E)BRAF via a regulatory interface at R662 of (V600E)BRAF. Importantly, melanoma cell lines selected for resistance to BRAFi+MEKi, but not those to BRAFi alone, displayed robust drug addiction, providing a potentially exploitable therapeutic opportunity.


Cancer Cell | 2016

Long-Term ERK Inhibition in KRAS-Mutant Pancreatic Cancer Is Associated with MYC Degradation and Senescence-like Growth Suppression

Tikvah K. Hayes; Nicole F. Neel; Chaoxin Hu; Prson Gautam; Melissa Chenard; Brian Long; Meraj Aziz; Michelle Kassner; Kirsten L. Bryant; Mariaelena Pierobon; Raoud Marayati; Swapnil Kher; Samuel D. George; Mai Xu; Andrea Wang-Gillam; Ahmed A. Samatar; Anirban Maitra; Krister Wennerberg; Emanuel F. Petricoin; Hongwei H. Yin; Barry D. Nelkin; Adrienne D. Cox; Jen Jen Yeh; Channing J. Der

Induction of compensatory mechanisms and ERK reactivation has limited the effectiveness of Raf and MEK inhibitors in RAS-mutant cancers. We determined that direct pharmacologic inhibition of ERK suppressed the growth of a subset of KRAS-mutant pancreatic cancer cell lines and that concurrent phosphatidylinositol 3-kinase (PI3K) inhibition caused synergistic cell death. Additional combinations that enhanced ERK inhibitor action were also identified. Unexpectedly, long-term treatment of sensitive cell lines caused senescence, mediated in part by MYC degradation and p16 reactivation. Enhanced basal PI3K-AKT-mTOR signaling was associated with de novo resistance to ERK inhibitor, as were other protein kinases identified by kinome-wide siRNA screening and a genetic gain-of-function screen. Our findings reveal distinct consequences of inhibiting this kinase cascade at the level of ERK.


Journal of Medicinal Chemistry | 2014

Discovery of Novel, Dual Mechanism ERK Inhibitors by Affinity Selection Screening of an Inactive Kinase

Yongqi Deng; Gerald W. Shipps; Alan B. Cooper; Jessie M. English; D. Allen Annis; Donna Carr; Yang Nan; Tong Wang; Hugh Y. Zhu; Cheng-Chi Chuang; Priya Dayananth; Alan Hruza; Li Xiao; Weihong Jin; Paul Kirschmeier; William T. Windsor; Ahmed A. Samatar

An affinity-based mass spectrometry screening technology was used to identify novel binders to both nonphosphorylated and phosphorylated ERK2. Screening of inactive ERK2 identified a pyrrolidine analogue 1 that bound to both nonphosphorylated and phosphorylated ERK2 and inhibited ERK2 kinase activity. Chemical optimization identified compound 4 as a novel, potent, and highly selective ERK1,2 inhibitor which not only demonstrated inhibition of phosphorylation of ERK substrate p90RSK but also demonstrated inhibition of ERK1,2 phosphorylation on the activation loop. X-ray cocrystallography revealed that upon binding of compound 4 to ERK2, Tyr34 undergoes a rotation (flip) along with a shift in the poly-Gly rich loop to create a new binding pocket into which 4 can bind. This new binding mode represents a novel mechanism by which high affinity ATP-competitive compounds may achieve excellent kinase selectivity.


Molecular Cancer Therapeutics | 2016

Dissecting Therapeutic Resistance to ERK Inhibition.

Sharda Jha; Erick J. Morris; Alan Hruza; My Mansueto; Gottfried K. Schroeder; Jaren Arbanas; Daniel R. McMasters; Clifford Restaino; Priya Dayananth; Stuart Black; Nathaniel L. Elsen; Anthony Mannarino; Alan Cooper; Stephen Fawell; Leigh Zawel; Lata Jayaraman; Ahmed A. Samatar

The MAPK pathway is frequently activated in many human cancers, particularly melanomas. A single-nucleotide mutation in BRAF resulting in the substitution of glutamic acid for valine (V600E) causes constitutive activation of the downstream MAPK pathway. Selective BRAF and MEK inhibitor therapies have demonstrated remarkable antitumor responses in BRAFV600E-mutant melanoma patients. However, initial tumor shrinkage is transient and the vast majority of patients develop resistance. We previously reported that SCH772984, an ERK 1/2 inhibitor, effectively suppressed MAPK pathway signaling and cell proliferation in BRAF, MEK, and concurrent BRAF/MEK inhibitor-resistant tumor models. ERK inhibitors are currently being evaluated in clinical trials and, in anticipation of the likelihood of clinical resistance, we sought to prospectively model acquired resistance to SCH772984. Our data show that long-term exposure of cells to SCH772984 leads to acquired resistance, attributable to a mutation of glycine to aspartic acid (G186D) in the DFG motif of ERK1. Structural and biophysical studies demonstrated specific defects in SCH772984 binding to mutant ERK. Taken together, these studies describe the interaction of SCH772984 with ERK and identify a novel mechanism of ERK inhibitor resistance through mutation of a single residue within the DFG motif. Mol Cancer Ther; 15(4); 548–59. ©2016 AACR.


Bioorganic & Medicinal Chemistry Letters | 2015

Discovery of hydroxyaniline amides as selective Extracellular Regulated Kinase (Erk) inhibitors.

Hugh Zhu; Jagdish Desai; Yongqi Deng; Alan Cooper; James Wang; Jerry Shipps; Ahmed A. Samatar; Donna Carr; William T. Windsor

Starting from weak μM hits identified through affinity based Automated Ligand Identification System (ALIS) screenings, double digit nM hydroxyaniline amide Erk inhibitors were discovered. This class of compounds had the unique dual mechanism of inhibiting activated and non-activated forms of Erk. They generally had high degree of selectivity in kinase panel tested.


JCI insight | 2018

Development of MK-8353, an orally administered ERK1/2 inhibitor, in patients with advanced solid tumors

Stergios J. Moschos; Ryan J. Sullivan; Wen-Jen Hwu; Ramesh K. Ramanathan; Alex A. Adjei; Peter C.C. Fong; Ronnie Shapira-Frommer; Hussein Tawbi; Joseph Rubino; Thomas S. Rush; Da Zhang; Nathan R. Miselis; Ahmed A. Samatar; Patrick Chun; Eric H. Rubin; James Schiller; Brian Long; Priya Dayananth; Donna Carr; Paul Kirschmeier; W. Robert Bishop; Yongqi Deng; Alan B. Cooper; Gerald W. Shipps; Blanca Homet Moreno; Lidia Robert; Antoni Ribas; Keith T. Flaherty

BACKGROUND Constitutive activation of ERK1/2 occurs in various cancers, and its reactivation is a well-described resistance mechanism to MAPK inhibitors. ERK inhibitors may overcome the limitations of MAPK inhibitor blockade. The dual mechanism inhibitor SCH772984 has shown promising preclinical activity across various BRAFV600/RAS-mutant cancer cell lines and human cancer xenografts. METHODS We have developed an orally bioavailable ERK inhibitor, MK-8353; conducted preclinical studies to demonstrate activity, pharmacodynamic endpoints, dosing, and schedule; completed a study in healthy volunteers (P07652); and subsequently performed a phase I clinical trial in patients with advanced solid tumors (MK-8353-001). In the P07652 study, MK-8353 was administered as a single dose in 10- to 400-mg dose cohorts, whereas in the MK-8353-001 study, MK-8353 was administered in 100- to 800-mg dose cohorts orally twice daily. Safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor activity were analyzed. RESULTS MK-8353 exhibited comparable potency with SCH772984 across various preclinical cancer models. Forty-eight patients were enrolled in the P07652 study, and twenty-six patients were enrolled in the MK-8353-001 study. Adverse events included diarrhea (44%), fatigue (40%), nausea (32%), and rash (28%). Dose-limiting toxicity was observed in the 400-mg and 800-mg dose cohorts. Sufficient exposure to MK-8353 was noted that correlated with biological activity in preclinical data. Three of fifteen patients evaluable for treatment response in the MK-8353-001 study had partial response, all with BRAFV600-mutant melanomas. CONCLUSION MK-8353 was well tolerated up to 400 mg twice daily and exhibited antitumor activity in patients with BRAFV600-mutant melanoma. However, antitumor activity was not particularly correlated with pharmacodynamic parameters. TRIAL REGISTRATION ClinicalTrials.gov NCT01358331. FUNDING Merck Sharp & Dohme Corp., a subsidiary of Merck & Co. Inc., and NIH (P01 CA168585 and R35 CA197633).


Oncotarget | 2016

Targeting Notch enhances the efficacy of ERK inhibitors in BRAF-V600E melanoma

Clemens Krepler; Min Xiao; Minu Samanta; Adina Vultur; Hsin-Yi Chen; Patricia Brafford; Patricia Reyes-Uribe; Molly B. Halloran; Thomas C. Chen; Xu He; Denitsa Hristova; Qin Liu; Ahmed A. Samatar; Michael A. Davies; Katherine L. Nathanson; Mizuho Fukunaga-Kalabis; Meenhard Herlyn; Jessie Villanueva

The discovery of activating BRAF mutations in approximately 50% of melanomas has led to the development of MAPK pathway inhibitors, which have transformed melanoma therapy. However, not all BRAF-V600E melanomas respond to MAPK inhibition. Therefore, it is important to understand why tumors with the same oncogenic driver have variable responses to MAPK inhibitors. Here, we show that concurrent loss of PTEN and activation of the Notch pathway is associated with poor response to the ERK inhibitor SCH772984, and that co-inhibition of Notch and ERK decreased viability in BRAF-V600E melanomas. Additionally, patients with low PTEN and Notch activation had significantly shorter progression free survival when treated with BRAF inhibitors. Our studies provide a rationale to further develop combination strategies with Notch antagonists to maximize the efficacy of MAPK inhibition in melanoma. Our findings should prompt the evaluation of combinations co-targeting MAPK/ERK and Notch as a strategy to improve current therapies and warrant further evaluation of co-occurrence of aberrant PTEN and Notch activation as predictive markers of response to therapy.


Molecular Cancer | 2015

Erratum to: Antitumor activity of the ERK inhibitor SCH722984 against BRAF mutant, NRAS mutant and wild-type melanoma

Deborah Jl Wong; Lidia Robert; Mohammad Atefi; Amanda Lassen; Geetha Avarappatt; Michael Cerniglia; Earl Avramis; Jennifer Tsoi; David Foulad; Thomas G. Graeber; Begonya Comin-Anduix; Ahmed A. Samatar; Roger S. Lo; Antoni Ribas

Deborah JL Wong and Lidia Robert contributed equally to this work. The online version of the original article can be found under doi:10.1186/1476-4598-13-194.

Collaboration


Dive into the Ahmed A. Samatar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge