Ahmed El-Ghannam
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ahmed El-Ghannam.
Expert Review of Medical Devices | 2005
Ahmed El-Ghannam
Over the past 30 years, an enormous array of biomaterials proposed as ideal scaffolds for cell growth have emerged, yet few have demonstrated clinical efficacy. Biomaterials, regardless of whether they are permanent or biodegradable, naturally occurring or synthetic, need to be biocompatible, ideally osteoinductive, osteoconductive, integrative, porous and mechanically compatible with native bone to fulfill their desired role in bone tissue engineering. These materials provide cell anchorage sites, mechanical stability and structural guidance and in vivo, provide the interface to respond to physiologic and biologic changes as well as to remodel the extracellular matrix in order to integrate with the surrounding native tissue. Calcium phosphate ceramics and bioactive glasses were introduced more than 30 years ago as bone substitutes. These materials are considered bioactive as they bond to bone and enhance bone tissue formation. The bioactivity property has been attributed to the similarity between the surface composition and structure of bioactive materials, and the mineral phase of bone. The drawback in using bioactive glasses and calcium phosphate ceramics is that close proximity to the host bone is necessary to achieve osteoconduction. Even when this is achieved, new bone growth is often strictly limited because these materials are not osteoinductive in nature. Bone has a vast capacity for regeneration from cells with stem cell characteristics. Moreover, a number of different growth factors including bone morphogenetic proteins, have been demonstrated to stimulate bone growth, collagen synthesis and fracture repair both in vitro and in vivo. Attempts to develop a tissue-engineering scaffold with both osteoconductivity and osteoinductivity have included loading osteoinductive proteins and/or osteogenic cells on the traditional bioactive materials. Yet issues that must be considered for the effective application of bioceramics in the field of tissue engineering are the degree of bioresorption and the poor mechanical strength. The synthesis of a new generation of biomaterials that can specifically serve as tissue engineering scaffolds for drug and cell delivery is needed. Nanotechnology can provide an alternative way of processing porous bioceramics with high mechanical strength and enhanced bioactivity and resorbability.
Journal of Biomedical Materials Research | 1997
Ahmed El-Ghannam; Paul Ducheyne; Irving M. Shapiro
We describe the effects on cell function of treating porous bioactive glass (BG) such that its surface is a composite of carbonated hydroxyapatite and serum protein. The effects on bone cell function of porous hydroxyapatite (HA) ceramic and porous glass treated to become amorphous calcium phosphate only also were studied subsequent to their having adsorbed a serum protein layer. Substrates treated for different durations were seeded with MC3T3-E1 cells and cultured for 3-17 days. Whereas cells seeded on any substrates, BG and HA produced collagen types I and III, bone sialoprotein, and osteopontin, there were significant differences between HA and BG, and among the various surface conditions created on BG. Covering the glass surface with hydroxyapatite and serum protein enhanced expression of high alkaline phosphatase activity, high rates of cell proliferation, and production of mineralized extracellular matrix. The enhancement may be due to the adsorption of a high quantity of fibronectin from the serum onto the reacted bioactive glass surface.
Journal of Biomedical Materials Research | 1998
Ahmed El-Ghannam; Lisa Starr; Jonathan C. R. Jones
Enhancement of epithelial cell attachment to laminin-5-coated titanium alloy (Ti-6Al-4V) implant material was evaluated in vitro. Protein analysis showed that Ti-6Al-4V has a high affinity for laminin-5 and adsorbed significantly more laminin-5 than laminin-1. DNA analysis showed that laminin-5 enhanced attachment of normal human epidermal keratinocytes (NHEK) to Ti-6Al-4V significantly more than did laminin-1 or uncoated controls. The effect of passivation on laminin-5 adsorption and activity on Ti-6Al-4V also was evaluated. Passivation had no significant effect on the amount of protein adsorbed; however, AFM, ESCA, and ToF-SIMS analyses suggested that passivation affects the conformation of adsorbed laminin-5. Although laminin-5 coating significantly enhanced rapid attachment of epithelial cells to both passivated and unpassivated Ti-6Al-4V, surface area measurements showed that cells spread on laminin-5-coated passivated Ti-6Al-4V covered a significantly larger surface area than cells spread on laminin-5-coated unpassivated samples. TEM analysis showed that cells formed significantly more hemidesmosomes on the surface of laminin-5 coated passivated than on the surface of laminin-5 coated unpassivated titanium alloy. The enhancement of rapid cell attachment, spreading, and hemidesmosome assembly on laminin-5-coated passivated samples may reflect better integration between epithelial cells and titanium alloy and thus may be predictive of long-term implant stability.
Journal of Biomedical Materials Research | 2001
Ahmed El-Ghannam; Essmat Hamazawy; Ahmed Yehia
Bioactive glass ceramic is characterized by high mechanical strength and a slow rate of bone bonding. To understand the factors contributing to a decrease in the rate of bone bonding to bioactive glass ceramic, we evaluated the effect of different percentages of bioactive glass crystallization on corrosion behavior, zeta potential, and serum protein adsorption. X-ray diffraction analysis showed that heat treatment of bioactive glass in the temperature range 550 degrees -700 degrees C resulted in the precipitation of Na(2)Ca(2)Si(3)O(9) crystals in the glass matrix. The percentage of crystallization increased in the order: 5%, 8%, 45%, and 83% after thermal treatment at 550 degrees, 600 degrees, 650 degrees, and 700 degrees C/1 h, respectively. Scanning electron microscopic analyses of bioactive glass treated at 550 degrees C showed major glass in glass-phase separation. Moreover, energy-dispersive X-ray analyses indicated that during crystallization P is concentrated in the glassy phase. Induced-coupled plasma analyses showed that after 24 h immersion in simulated body fluid, the concentration of the released P ion increased as the crystallization percentage of bioactive glass increased. zeta potential of bioactive glass samples containing 5% crystallization had a statistically significant higher negative value than control untreated bioactive glass (p <.02). Control untreated bioactive glass adsorbed a statistically significant higher amount of serum protein than bioactive glass samples containing 5% crystallization (p <.02). Results of our study suggest that inhibition of protein adsorption might be responsible for the slow rate of bone bonding to bioactive glass ceramic. It is also possible that conformation changes inhibit the activity of the protein adsorbed onto thermally treated bioactive glass.
Journal of Orthopaedic Research | 1999
Ahmed El-Ghannam; Paul Ducheyne; Irving M. Shapiro
Journal of Biomedical Materials Research | 1995
Ahmed El-Ghannam; Paul Ducheyne; Irving M. Shapiro
Journal of Biomedical Materials Research Part A | 2004
Ahmed El-Ghannam
Journal of Biomedical Materials Research Part A | 2004
Ahmed El-Ghannam; Paul Ducheyne; Christopher S. Adams; Irving M. Shapiro; David G. Castner; Stephen L. Golledge; Russell J. Composto
Archive | 1993
Paul Ducheyne; Ahmed El-Ghannam; Irving M. Shapiro
Journal of Materials Science: Materials in Medicine | 2005
C. Q. Ning; J. Mehta; Ahmed El-Ghannam