Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmed F. Salem is active.

Publication


Featured researches published by Ahmed F. Salem.


Cell Cycle | 2012

Mitochondria “fuel” breast cancer metabolism: Fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells

Federica Sotgia; Diana Whitaker-Menezes; Ubaldo E. Martinez-Outschoorn; Ahmed F. Salem; Aristotelis Tsirigos; Rebecca Lamb; Sharon Sneddon; James Hulit; Anthony Howell; Michael P. Lisanti

Here, we present new genetic and morphological evidence that human tumors consist of two distinct metabolic compartments. First, re-analysis of genome-wide transcriptional profiling data revealed that > 95 gene transcripts associated with mitochondrial biogenesis and/or mitochondrial translation were significantly elevated in human breast cancer cells, as compared with adjacent stromal tissue. Remarkably, nearly 40 of these upregulated gene transcripts were mitochondrial ribosomal proteins (MRPs), functionally associated with mitochondrial translation of protein components of the OXPHOS complex. Second, during validation by immunohistochemistry, we observed that antibodies directed against 15 markers of mitochondrial biogenesis and/or mitochondrial translation (AKAP1, GOLPH3, GOLPH3L, MCT1, MRPL40, MRPS7, MRPS15, MRPS22, NRF1, NRF2, PGC1-α, POLRMT, TFAM, TIMM9 and TOMM70A) selectively labeled epithelial breast cancer cells. These same mitochondrial markers were largely absent or excluded from adjacent tumor stromal cells. Finally, markers of mitochondrial lipid synthesis (GOLPH3) and mitochondrial translation (POLRMT) were associated with poor clinical outcome in human breast cancer patients. Thus, we conclude that human breast cancers contain two distinct metabolic compartments—a glycolytic tumor stroma, which surrounds oxidative epithelial cancer cells—that are mitochondria-rich. The co-existence of these two compartments is indicative of metabolic symbiosis between epithelial cancer cells and their surrounding stroma. As such, epithelial breast cancer cells should be viewed as predatory metabolic “parasites,” which undergo anabolic reprogramming to amplify their mitochondrial “power.” This notion is consistent with the observation that the anti-malarial agent chloroquine may be an effective anticancer agent. New anticancer therapies should be developed to target mitochondrial biogenesis and/or mitochondrial translation in human cancer cells.


Cell Cycle | 2012

Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells

Ahmed F. Salem; Diana Whitaker-Menezes; Zhao Lin; Ubaldo E. Martinez-Outschoorn; Herbert B. Tanowitz; Mazhar Al-Zoubi; Anthony Howell; Richard G. Pestell; Federica Sotgia; Michael P. Lisanti

Previously, we proposed a new paradigm to explain the compartment-specific role of autophagy in tumor metabolism. In this model, autophagy and mitochondrial dysfunction in the tumor stroma promotes cellular catabolism, which results in the production of recycled nutrients. These chemical building blocks and high-energy “fuels” would then drive the anabolic growth of tumors, via autophagy resistance and oxidative mitochondrial metabolism in cancer cells. We have termed this new form of stromal-epithelial metabolic coupling: “two-compartment tumor metabolism.” Here, we stringently tested this energy-transfer hypothesis, by genetically creating (1) constitutively autophagic fibroblasts, with mitochondrial dysfunction or (2) autophagy-resistant cancer cells, with increased mitochondrial function. Autophagic fibroblasts were generated by stably overexpressing key target genes that lead to AMP-kinase activation, such as DRAM and LKB1. Autophagy-resistant cancer cells were derived by overexpressing GOLPH3, which functionally promotes mitochondrial biogenesis. As predicted, DRAM and LKB1 overexpressing fibroblasts were constitutively autophagic and effectively promoted tumor growth. We validated that autophagic fibroblasts showed mitochondrial dysfunction, with increased production of mitochondrial fuels (L-lactate and ketone body accumulation). Conversely, GOLPH3 overexpressing breast cancer cells were autophagy-resistant, and showed signs of increased mitochondrial biogenesis and function, which resulted in increased tumor growth. Thus, autophagy in the tumor stroma and oxidative mitochondrial metabolism (OXPHOS) in cancer cells can both dramatically promote tumor growth, independently of tumor angiogenesis. For the first time, our current studies also link the DNA damage response in the tumor microenvironment with “Warburg-like” cancer metabolism, as DRAM is a DNA damage/repair target gene.


Cell Cycle | 2012

Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance

Ahmed F. Salem; Diana Whitaker-Menezes; Anthony Howell; Federica Sotgia; Michael P. Lisanti

Here, we set out to test the novel hypothesis that increased mitochondrial biogenesis in epithelial cancer cells would “fuel” enhanced tumor growth. For this purpose, we generated MDA-MB-231 cells (a triple-negative human breast cancer cell line) overexpressing PGC-1α and MitoNEET, which are established molecules that drive mitochondrial biogenesis and increased mitochondrial oxidative phosphorylation (OXPHOS). Interestingly, both PGC-1α and MitoNEET increased the abundance of OXPHOS protein complexes, conferred autophagy resistance under conditions of starvation and increased tumor growth by up to ~3-fold. However, this increase in tumor growth was independent of neo-angiogenesis, as assessed by immunostaining and quantitation of vessel density using CD31 antibodies. Quantitatively similar increases in tumor growth were also observed by overexpression of PGC-1β and POLRMT in MDA-MB-231 cells, which are also responsible for mediating increased mitochondrial biogenesis. Thus, we propose that increased mitochondrial “power” in epithelial cancer cells oncogenically promotes tumor growth by conferring autophagy resistance. As such, PGC-1α, PGC-1β, mitoNEET and POLRMT should all be considered as tumor promoters or “metabolic oncogenes.” Our results are consistent with numerous previous clinical studies showing that metformin (a weak mitochondrial “poison”) prevents the onset of nearly all types of human cancers in diabetic patients. Therefore, metformin (a complex I inhibitor) and other mitochondrial inhibitors should be developed as novel anticancer therapies, targeting mitochondrial metabolism in cancer cells.


Cell Cycle | 2013

Cigarette smoke metabolically promotes cancer, via autophagy and premature aging in the host stromal microenvironment

Ahmed F. Salem; Mazhar Al-Zoubi; Diana Whitaker-Menezes; Ubaldo E. Martinez-Outschoorn; Rebecca Lamb; James Hulit; Anthony Howell; Ricardo Gandara; Marina Sartini; Ferruccio Galbiati; Generoso Bevilacqua; Federica Sotgia; Michael P. Lisanti

Cigarette smoke has been directly implicated in the disease pathogenesis of a plethora of different human cancer subtypes, including breast cancers. The prevailing view is that cigarette smoke acts as a mutagen and DNA damaging agent in normal epithelial cells, driving tumor initiation. However, its potential negative metabolic effects on the normal stromal microenvironment have been largely ignored. Here, we propose a new mechanism by which carcinogen-rich cigarette smoke may promote cancer growth, by metabolically “fertilizing” the host microenvironment. More specifically, we show that cigarette smoke exposure is indeed sufficient to drive the onset of the cancer-associated fibroblast phenotype via the induction of DNA damage, autophagy and mitophagy in the tumor stroma. In turn, cigarette smoke exposure induces premature aging and mitochondrial dysfunction in stromal fibroblasts, leading to the secretion of high-energy mitochondrial fuels, such as L-lactate and ketone bodies. Hence, cigarette smoke induces catabolism in the local microenvironment, directly fueling oxidative mitochondrial metabolism (OXPHOS) in neighboring epithelial cancer cells, actively promoting anabolic tumor growth. Remarkably, these autophagic-senescent fibroblasts increased breast cancer tumor growth in vivo by up to 4-fold. Importantly, we show that cigarette smoke-induced metabolic reprogramming of the fibroblastic stroma occurs independently of tumor neo-angiogenesis. We discuss the possible implications of our current findings for the prevention of aging-associated human diseases and, especially, common epithelial cancers, as we show that cigarette smoke can systemically accelerate aging in the host microenvironment. Finally, our current findings are consistent with the idea that cigarette smoke induces the “reverse Warburg effect,” thereby fueling “two-compartment tumor metabolism” and oxidative mitochondrial metabolism in epithelial cancer cells.


Cell Cycle | 2011

Caveolin-1 promotes pancreatic cancer cell differentiation and restores membranous E-cadherin via suppression of the epithelial-mesenchymal transition

Ahmed F. Salem; Gloria Bonuccelli; Generoso Bevilacqua; Hwyda A. Arafat; Richard G. Pestell; Federica Sotgia; Michael P. Lisanti

Pancreatic cancer is one of the deadliest cancers due to early rapid metastasis and chemoresistance. Recently, epithelial to mesenchymal transition (EMT) was shown to play a key role in the pathogenesis of pancreatic cancer. To understand the role of caveolin-1 (Cav-1) in EMT, we over-expressed Cav-1 in a pancreatic cancer cell line, Panc 10.05, that does not normally express Cav-1. Here, we show that Cav-1 expression in pancreatic cancer cells induces an epithelial phenotype and promotes cell-cell contact, with increased expression of plasma membrane bound E-cadherin and beta-catenin. Mechanistically, Cav-1 induces Snail downregulation and decreased activation of AKT, MAPK and TGF-beta-Smad signaling pathways. In vitro, Cav-1 expression reduces cell migration and invasion, and attenuates doxorubicin-chemoresistance of pancreatic cancer cells. Importantly, in vivo studies revealed that Cav-1 expression greatly suppresses tumor formation in a xenograft model. Most interestingly, Panc/Cav-1 tumors displayed organized nests of differentiated cells that were totally absent in control tumors. Confirming our in vitro results, these nests of differentiated cells showed reexpression of E-cadherin and beta-catenin at the cell membrane. Thus, we provide evidence that Cav-1 functions as a crucial modulator of EMT and cell differentiation in pancreatic cancer.


Cell Cycle | 2012

Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1α, autophagy and ketone body production.

Ahmed F. Salem; Anthony Howell; Marina Sartini; Federica Sotgia; Michael P. Lisanti

Our recent studies have mechanistically demonstrated that cancer-associated fibroblasts (CAFs) produce energy-rich metabolites that functionally support the growth of cancer cells. Also, several authors have demonstrated that DNA instability in the tumor stroma greatly contributes to carcinogenesis. To further test this hypothesis, we stably knocked-down BRCA1 expression in human hTERT-immortalized fibroblasts (shBRCA1) using an shRNA lentiviral approach. As expected, shBRCA1 fibroblasts displayed an elevated growth rate. Using immunofluorescence and immunoblot analysis, shBRCA1 fibroblasts demonstrated an increase in markers of autophagy and mitophagy. Most notably, shBRCA1 fibroblasts also displayed an elevation of HIF-1α expression. In accordance with these findings, shBRCA1 fibroblasts showed a 5.5-fold increase in ketone body production; ketone bodies function as high-energy mitochondrial fuels. This is consistent with the onset of mitochondrial dysfunction in BRCA1-deficient fibroblasts. Conversely, after 48 h of co-culturing shBRCA1 fibroblasts with a human breast cancer cell line (MDA-MB-231 cell), mitochondrial activity was enhanced in these epithelial cancer cells. Interestingly, our preclinical studies using xenografts demonstrated that shBRCA1 fibroblasts induced an ~2.2-fold increase in tumor growth when co-injected with MDA-MB-231 cells into nude mice. We conclude that a BRCA1 deficiency in the tumor stroma metabolically promotes cancer progression, via ketone production.


Cell Cycle | 2013

Creating a tumor-resistant microenvironment: Cell-mediated delivery of TNFα completely prevents breast cancer tumor formation in vivo

Mazhar Al-Zoubi; Ahmed F. Salem; Ubaldo E. Martinez-Outschoorn; Diana Whitaker-Menezes; Rebecca Lamb; James Hulit; Anthony Howell; Ricardo Gandara; Marina Sartini; Hwyda A. Arafat; Generoso Bevilacqua; Federica Sotgia; Michael P. Lisanti

Here, we provide the necessary proof of concept, that it is possible to metabolically create a non-permissive or “hostile” stromal microenvironment, which actively prevents tumor engraftment in vivo. We developed a novel genetically engineered fibroblast cell line that completely prevents tumor formation in mice, with a 100% protection rate. No host side effects were apparent. This could represent a viable cellular strategy for preventing and treating a variety of human cancers. More specifically, we examined the autocrine and paracrine effects of the cellular delivery of TNFα on breast cancer tumor growth and cancer metabolism. For this purpose, we recombinantly overexpressed TNFα in human breast cancer cells (MDA-MB-231) or human immortalized fibroblasts (hTERT-BJ1). Our results directly show that TNFα functions as a potent tumor suppressor. Remarkably, TNFα-expressing breast cancer cells were viable, without any significant increases in their basal apoptotic rate. However, after 4 weeks post-implantation, TNFα-expressing breast cancer cells failed to form any tumors in xenografted mice (0 tumors/10 injections), ultimately conferring 100% protection against tumorigenesis. Similarly, TNFα-overexpressing fibroblasts were also viable, without any increases in apoptosis. Significantly, complete tumor suppression was obtained by co-injecting TNFα expressing stromal fibroblasts with human breast cancer cells, indicating that paracrine cell-mediated delivery of TNFα can also prevent tumor engraftment and growth (0 tumors/10 injections). Mechanistically, TNFα induced autophagy and mitochondrial dysfunction in both epithelial cancer cells and stromal fibroblasts, preventing energy transfer from the tumor microenvironment, likely “starving” the cancer cells to death. In addition, via qRT-PCR analysis of MDA-MB-231 cells, we observed that TNFα mediated the upregulation of gene transcripts associated with inflammation and senescence [IL-1-β, IL-6, IL-8, MCP-1, COX-2, p21(WAF1/CIP1)] and downregulated known tumor-promoting genes (collagen VI and MMP2). Recombinant overexpression of TNFα receptor(s) in MDA-MB-231 cells also significantly reduced tumor growth, but was not as effective as the TNFα ligand itself in preventing tumor growth. Thus, we propose that stromal cell-mediated delivery of TNFα to human tumors [using transfected fibroblasts or mesenchymal stem cells (hMSCs)] may be a novel and effective strategy for the prevention and treatment of human cancers.


Surgery | 2010

Induction of monocyte chemoattractant protein-1 by nicotine in pancreatic ductal adenocarcinoma cells: Role of osteopontin

Melissa Lazar; Jennifer Sullivan; Galina Chipitsyna; Tamer Aziz; Ahmed F. Salem; Qiaoke Gong; Agnes Witkiewicz; David T. Denhardt; Charles J. Yeo; Hwyda A. Arafat

BACKGROUND Cigarette smoke and nicotine are among the leading environmental risk factors for developing pancreatic ductal adenocarcinoma (PDA). We showed recently that nicotine induces osteopontin (OPN), a protein that plays critical roles in inflammation and tumor metastasis. We identified an OPN isoform, OPNc, that is selectively inducible by nicotine and highly expressed in PDA tissue from smokers. In this study, we explored the potential proinflammatory role of nicotine in PDA through studying its effect on the expression of monocyte chemoattractant protein (MCP)-1 and evaluated the role of OPN in mediating these effects. METHODS MCP-1 mRNA and protein in PDA cells treated with or without nicotine (3-300 nmol/L) or OPN (0.15-15 nmol/L) were analyzed by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Luciferase-labeled promoter studies evaluated the effects of nicotine and OPN on MCP-1 transcription. Intracellular and tissue colocalization of OPN and MCP-1 were examined by immunofluorescence and immunohistochemistry. RESULTS Nicotine treatment significantly increased MCP-1 expression in PDA cells. Interestingly, blocking OPN with siRNA or OPN antibody abolished these effects. Transient transfection of the OPNc gene in PDA cells or their treatment with recombinant OPN protein significantly (P < .05) increased MCP-1 mRNA and protein and induced its promoter activity. MCP-1 was found in 60% of invasive PDA lesions, of whom 66% were smokers. MCP-1 colocalized with OPN in PDA cells and in the malignant ducts, and correlated well with higher expression levels of OPN in the tissue from patients with invasive PDA. CONCLUSION Our data suggest that cigarette smoking and nicotine may contribute to PDA inflammation by inducing MCP-1 and provide a novel insight into a unique role for OPN in mediating these effects.


Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging#R##N#Volume 7: Role of Autophagy in Therapeutic Applications | 2015

Cigarette Smoke Promotes Cancer via Autophagy

Ahmed F. Salem; Federica Stogia; Michael P. Lisanti

Cigarette smoke is considered to be a direct cause of several types of human cancers. The current explanation for the carcinogenic effect of cigarette smoke is that cigarette smoke induces DNA mutations in epithelial cells, which then become cancerous. However, this explanation ignores other possible effects of cigarette smoke on the epithelial microenvironment. To elucidate the effect of the epithelial microenvironment, we have studied the impact of cigarette smoke extract on immortalized human fibroblasts. Chronic treatment of cigarette smoke induced senescence in the treated fibroblasts. Furthermore, immunoblot studies showed that both chronic and acute doses of cigarette smoke elevated markers of DNA damage, autophagy, and mitophagy (autophagy of mitochondria). Accordingly, mitochondrial complexes were reduced in a cigarette smoke dose-dependent manner. As a result, high levels of lactate and ketones were detected in the cell media, indicating a metabolic shift toward glycolysis in cigarette smoke-treated fibroblasts. Finally, we examined whether the autophagic cigarette smoke-treated fibroblasts could promote tumor growth in preclinical animal models. Specifically, we co-injected cigarette smoke-treated fibroblasts with breast cancer cells into nude mice. Remarkably, these autophagic fibroblasts promoted tumor growth by up to four-fold. In conclusion, cigarette smoke can promote cancer growth by inducing senescence and autophagy in the tumor microenvironment.


Archive | 2011

Retroviral Vectors in Gene Therapy: Mechanism of Integration, Successes in Gene Therapy Trials, Emerging Problems and Potential Solutions

Ahmed F. Salem; Johanna A. Smith; Michael P. Lisanti; René Daniel

Retroviral vectors have gained an increasing value in gene therapy because they stably deliver therapeutic genes to the host cell genome. These therapeutic genes are supposed to rectify consequences of inherited and acquired mutated genes in the host cell genome, or alter host cell function to cure diseases. In the following section we will discuss the biology and life cycle of retroviruses which starts with viral entry into the host cell, reverse transcription of viral RNA, nuclear import of the provirus, and finally integration of viral DNA into the cell host genome (Flint, Racaniello et al. 2004). Integration involves viral and host cellular proteins. Their role is discussed in the third and fourth sections of this chapter. Recently, the process of integration site selection (which is where the viral DNA integrates with the host cell DNA) has been quite understood throughout many in vitro and in vivo studies. The human genome project has enabled us to identify integration site preferences for retroviral vectors in human trials. The results of these human trials are reviewed in the fifth section of the chapter. Finally, the last section of the chapter will demonstrate the latest gene therapy trials attempts to control integration sites by manipulation of retrovirus genes and proteins.

Collaboration


Dive into the Ahmed F. Salem's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Howell

Manchester Academic Health Science Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hwyda A. Arafat

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles J. Yeo

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Galina Chipitsyna

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Jennifer Sullivan

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Mazhar Al-Zoubi

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge