Ahmed Gaber
Port Said University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ahmed Gaber.
Remote Sensing | 2009
Ahmed Gaber; Magaly Koch; Farouk El-Baz
The present work aims at identifying favorable locations for groundwater resources harvesting and extraction along the Wadi Feiran basin, SW Sinai Peninsula, Egypt, in an effort to facilitate new development projects in this area. Landsat ETM+, Radarsat-1 and PALSAR images of Wadi Feiran basin were used in this work to perform multisource data fusion and texture analysis, in order to classify the wadi deposits based on grain size distribution and predominant rock composition as this information may lead to the location of new groundwater resources. An unsupervised classification was first performed on two sets of fused images (i.e., ETM+/Radarsat-1 and ETM+/PALSAR) resulting in five classes (hybrid classes) describing the main alluvial sediments in the wadi system. Some variations in the spatial distribution of individual classes were observed, due to the different spectral and spatial resolutions of Radarsat-1 (C-band, 12.5 m) and PALSAR (L-band, 6.25 m) data. Alluvial deposits are mixtures of parent rocks located further upstream often at a great distance. In order to classify the alluvial deposits in terms of individual rock types (endmembers), a spectral linear unmixing of the optical ETM+ image was performed. Subsequently, each class of the fused (hybrid) images was correlated with (1) individual rock type fractions (endmembers) obtained from spectrally unmixing the ETM+ image, (2) the geocoded and calibrated radar images (Radarsat-1 and PALSAR) and, (3) the slope map generated from the SRTM data. The goal was to determine predominant rock composition, mean backscatter and slope values for each of the five hybrid classes. Backscatter coefficient values extracted from both radar data (C- and L-band) were correlated and checked in the field, confirming that both wavelengths produced more or less similar textural classes that correspond to specific grain or fragment sizes of alluvial deposits. However, comparison of the spatial distribution of matching hybrid classes showed some variations due to the greater discrimination power of surface texture by Radarsat-1 C-band despite its lower spatial resolution. Furthermore, both hybrid classification results showed that regardless of elevation, areas that are covered by fine and moderate grains (fine sand to pebble) and are located along gentle terrains are favorable for groundwater recharge; while areas that are covered by very coarse grains (cobble to boulder) and are located along steep terrains are more likely to be affected by flash floods.
international geoscience and remote sensing symposium | 2011
Yuya Yokota; Masayoshi Matsumoto; Ahmed Gaber; Mark Grasmueck; Motoyuki Sato
A new approach for estimation of the tree root biomass is proposed by using GPR system with high accuracy positioning system. The 3D images of subsurface can be obtained clearly with this system, which we refer as “3DGPR”. We try to estimate the biomass of tree roots quantitatively by measuring the volume of the tree roots. We tested this system for tree roots measurement, and the broadening of the tree root with horizontal direction could be detected with 500 MHz and 800 MHz antenna. We excavated this tree every 10 cm from 0 cm to 50 cm to validate the accuracy of the result. Compared with the measurement result and the excavated one, the tree root whose diameter is more than 5 cm could be detected correctly. Some tree roots whose diameter is 3 cm also could be detected. The diameter in most of the tree roots is more than 2cm. In this result, we expect that the volume is supposed to be estimated within 30 percent error by using the excavated result for calibration data.
international conference on indoor positioning and indoor navigation | 2010
Motoyuki Sato; Ahmed Gaber; Yuya Yokota; Mark Grasmueck; Pierpaolo Marchesini
High-resolution Ground Penetrating Radar (GPR) images of the ground surface and shallow subsurface are needed in order to detect and identify small buried explosive materials such as Anti-Personnel (AP) landmines. A key requirement to produce sharp visualizations is centimetre-precise sensor positioning with real-time imaging results. We are pursuing two complementary approaches to accomplish this task: 1) Sensor tracking with a CCD camera, 2) and large work volume Indoor GPS. In outdoor field tests both methods have successfully imaged small landmine targets, which has a plastic body of less than 10cm diameter.
Remote Sensing for Agriculture, Ecosystems, and Hydrology XV | 2013
Magaly Koch; Ahmed Gaber; Mohamed H. Geriesh; El-Sayed A. Zaghloul; Sayed M. Arafat; Mostafa AbuBakr
A desert plain in Egypt is being investigated to develop new techniques of multisensor data integration for groundwater exploration. A combination of multispectral, thermal and microwave data (ASTER and PALSAR) and supported by ground measurements (GPR, field spectroradiometry and magnetometry) were used to investigate surface sediment characteristics of the El-Gallaba Plain area, NW of Aswan. This desert plain once hosted an ancestral river system long before the Nile even existed. Nowadays the fluvial deposits are largely covered by Aeolian and gravelly sands and thus only detectible with radar and thermal images. Results show two broad strips of thermal cooling anomalies arranged in a linear fashion and diagonally crossing the alluvial basin. Spectral signatures collected along the linear land surface temperature (LST) anomalies show generally higher reflectance values (higher albedo) than the surrounding sediments. Both, the cooler LST and higher albedo, suggest that the surface sediments within the anomaly strips have lower emissivity values (low heat storage capacity). Furthermore, the homogeneity of these sediments was measured with a ground penetrating radar (GPR) using 250 and 100 MHz shielded antenna. The 12 GPR profiles across the LST anomalies confirmed that the near-surface sediments (up to 10 m depth) consist of thin horizontal layers of sandstone with very low gravel content. They show very different textural and compositional characteristics with respect to the surrounding areas suggesting a different depositional environment. Thus 12 magnetic profiles with 1.5 km average length were acquired across the LST anomalies to investigate deep seated structures. The results confirmed the existence of graben-like structures with a maximum depth to the basement of 150 m and shallower depths toward the edges of the LST anomalies. Consequently, these structurally controlled basins could be promising areas for ground water accumulation and exploration in the El-Gallaba Plain of the Western Desert in Egypt.
Remote Sensing | 2018
Ahmed Gaber; Mohamed Abdelkareem; Ismail S. Abdelsadek; Magaly Koch; Farouk El-Baz
Despite the fact that the Sahara is considered the most arid region on Earth, it has witnessed prolonged fluvial and aeolian depositional history, and might harbor substantial fresh groundwater resources. Its ancient fluvial surfaces are, however, often concealed by aeolian deposits, inhibiting the discovery and mapping of potential groundwater recharge areas. However, recent advances in synthetic aperture radar (SAR) imaging offer a novel approach for detecting partially hidden and dynamic landscape features. Interferometry SAR coherence change detection (CCD) is a fairly recent technique that allows the mapping of very slight surface changes between multidate SAR images. Thus, this work explores the use of the CCD method to investigate the fluvial and aeolian morphodynamics along two paleochannels in Egypt. The results show that during wetter climates, runoff caused the erosion of solid rocks and the rounding of sand-sized grains, which were subsequently deposited in depressions further downstream. As an alternating dry climate prevailed, the sand deposits were reshaped into migrating linear dunes. These highly dynamic features are depicted on the CCD image with very low coherence values close to 0 (high change), while the deposits within the associated ephemeral wadis show low to moderate coherence values ranging from 0.2 to 0.4 (high to moderate change), and the country rocks show a relative absence of change with high coherence values close to 1. These linear dunes crossed their parent’s stream courses and dammed the runoff to form lakes during rainy seasons. Part of the dammed surface water would have infiltrated the ground to recharge the permeable wadi deposits. The alternation of fluvial and aeolian depositional environments produced unique hydromorphometrically trapped lakes that are very rare in arid regions, but of great interest because of their significance to groundwater recharge.
Remote Sensing | 2017
Ahmed Gaber; Noura Darwish; Magaly Koch
The accurate detection of land subsidence rates in urban areas is important to identify damage-prone areas and provide decision-makers with useful information. Meanwhile, no precise measurements of land subsidence have been undertaken within the coastal Port-Said City in Egypt to evaluate its hazard in relationship to sea-level rise. In order to address this shortcoming, this work introduces and evaluates a methodology that substantially improves small subsidence rate estimations in an urban setting. Eight ALOS/PALSAR-1 scenes were used to estimate the land subsidence rates in Port-Said City, using the Small BAse line Subset (SBAS) DInSAR technique. A stereo pair of ALOS/PRISM was used to generate an accurate DEM to minimize the residual topography effect on the generated interferograms. A total of 347 well distributed ground control points (GCP) were collected in Port-Said City using the leveling instrument to calibrate the generated DEM. Moreover, the eight PALSAR scenes were co-registered using 50 well-distributed GCPs and used to generate 22 interferogram pairs. These PALSAR interferograms were subsequently filtered and used together with the coherence data to calculate the phase unwrapping. The phase-unwrapped interferogram-pairs were then evaluated to discard four interferograms that were affected by phase jumps and phase ramps. Results confirmed that using an accurate DEM (ALOS/PRISM) was essential for accurately detecting small deformations. The vertical displacement rate during the investigated period (2007–2010) was estimated to be −28 mm. The results further indicate that the northern area of Port-Said City has been subjected to higher land subsidence rates compared to the southern area. Such land subsidence rates might induce significant environmental changes with respect to sea-level rise.
NRIAG Journal of Astronomy and Geophysics | 2017
Ahmed Gaber; Bassam Abu Amarah; Mohamed Abdelfattah; Sarah Ali
Abstract Mapping the spatial distributions of the fluvial deposits in terms of particles size as well as imaging the near-surface features along the non-vegetated aeolian sand-sheets, provides valuable geological information. Thus this work aims at investigating the contribution of the dual-polarization SAR data in classifying and mapping the surface sediments as well as investigating the effect of the radar incident-angle on improving the images of the hidden features under the desert sand cover. For mapping the fluvial deposits, the covariance matrix ([C2]) using four dual-polarized ALOS/PALSAR-1 scenes cover the Wadi El Matulla, East Qena, Egypt were generated. This [C2] matrix was used to generate a supervised classification map with three main classes (gravel, gravel/sand and sand). The polarimetric scattering response, spectral reflectance and temperatures brightness of these 3 classes were extracted. However for the aeolian deposits investigation, two Radarsat-1 and three full-polarimetric ALOS/PALSAR-1 images, which cover the northwestern sandy part of Sinai, Egypt were calibrated, filtered, geocoded and ingested in a GIS database to image the near-surface features. The fluvial mapping results show that the values of the radar backscattered coefficient (σ°) and the degree of randomness of the obtained three classes are increasing respectively by increasing their grain size. Moreover, the large incident angle (θi = 39.7) of the Radarsat-1 image has revealed a meandering buried stream under the sand sheet of the northwestern part of Sinai. Such buried stream does not appear in the other optical, SRTM and SAR dataset. The main reason is the enhanced contrast between the low backscattered return from the revealed meandering stream and the surroundings as a result of the increased backscattering intensity, which is related to the relatively large incident angle along the undulated surface of the study area. All archaeological observations support the existence of paleo-fresh water lagoon at the northwestern corner of the study area, which might have been the discharge lagoon of the revealed hidden stream.
NRIAG Journal of Astronomy and Geophysics | 2017
Gloria Molina; Ahmed Gaber; Farouk El-Baz
Abstract Groundwater resources in arid lands are crucial for supporting life. Thus, delineation of low land areas, where surface runoff accumulated during pluvial periods assists in groundwater explorations. Therefore, the drainage patterns in northeastern Niger using various sources of DEMs of optical (ASTER) and radar (SRTM) satellite data were extracted. These data reveal three palaeolakes in the Ténéré Desert. In addition, the DEMs together with the optical and radar satellite data were used to define a major watershed measuring 634,000 km2. This watershed may have led to the formation of one major palaeolake as an ancestor of the three palaeolakes. The latter extend to 11,514 km2, 17,571 km2 and 18,453 km2. The optical and radar satellites images show that the boundaries of these three lakes have been modified by extensive longitudinal and transverse sand dunes of considerable thickness. These dunes accumulated during a much later arid episode in geologic time, probably during the late Quaternary. Prior to that, the former marshlands received water from the Tibesti Mountains of northern Chad, the Ahaggar Plateau of southeastern Algeria and the Air Mountain of northern Niger. The drainage patterns clearly show the pathway of water down to the ground level. The longest drainage line is emanating from the Ahaggar Plateau and extends south west for 837 km. The water overflow of the southernmost lake led to the formation of another distinct drainage line, leading to the southwestern edge of the ancestral Megalake Chad. This drainage line begins in the vicinity of the town of Fachi and extends southward through the town of Dillia as a single tributary, and is here named the Dillia Palaeoriver. These observations, which are based on the study of satellite data require geophysical fieldwork to ascertain the interpretations, and evaluate the potential for groundwater accumulation in the region.
IOSR Journal of Applied Geology and Geophysics | 2016
Ahmed Gaber; Mohamed H. Geriesh; Shams El-Din Shaheen; Mohamed A. El-Fattah
The area of East Port-Said is recently regarded as one of the most important Egyptian potential area that helps improving the Egyptian’s national income. The area is considered as one of the Egyptian good areas for reclamation, and ready to grow as a new one-million citizen-city with full life necessities. East PortSaid area now includes a famous harbour for containers and transit-trade. However, many industrial, agricultural and touristic projects are strongly aimed to be initiated and established in such city. Accordingly, the area requires many intensive and detailed studies to evaluate and assess the environmental changes on the surface sediments. So the objectives of this study are to define the land units and changes associated with land use and land cover properties (LULC) by multi-temporal and multi-sensor Remote Sensing (RS) data.
NRIAG Journal of Astronomy and Geophysics | 2018
Shereen M. Ebrahim; N.I. Medhat; Khamis K. Mansour; Ahmed Gaber
Abstract Landmines represent a serious environmental problem for several countries as it causes severe injured and many victims. In this paper, the response of GPR from different parameters of the landmine targets has been shown and the data is correlated with observed field experiment made in 2012 at Miami Crandon Park test site. The ability of GPR for detecting non-metallic mines with different orientations was revealed and soil effect upon the GPR signal was examined putting into consideration the soil parameters in different locations in Egypt such as in Sinai and El Alamein. The simulation results showed that PMN-2 landmine was detected at 5 cm and 15 cm depths, even at the minimum radar cross section vertical orientation. The B-Scan (2D GPR profiles) of PMN-2 target at 15 cm depth figured out high reflectivity for Wadi deposits due to large contrast between PMN-2 landmine material and soil of sand dunes.
Collaboration
Dive into the Ahmed Gaber's collaboration.
National Authority for Remote Sensing and Space Sciences
View shared research outputsNational Authority for Remote Sensing and Space Sciences
View shared research outputs