Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmed I. Mahmoud is active.

Publication


Featured researches published by Ahmed I. Mahmoud.


Science | 2011

Transient Regenerative Potential of the Neonatal Mouse Heart

Enzo R. Porrello; Ahmed I. Mahmoud; E R Simpson; Joseph A. Hill; James A. Richardson; Eric N. Olson; Hesham A. Sadek

The heart in a newborn mouse can rebuild itself after injury, but this regenerative capacity is lost within a few days. Certain fish and amphibians retain a robust capacity for cardiac regeneration throughout life, but the same is not true of the adult mammalian heart. Whether the capacity for cardiac regeneration is absent in mammals or whether it exists and is switched off early after birth has been unclear. We found that the hearts of 1-day-old neonatal mice can regenerate after partial surgical resection, but this capacity is lost by 7 days of age. This regenerative response in 1-day-old mice was characterized by cardiomyocyte proliferation with minimal hypertrophy or fibrosis, thereby distinguishing it from repair processes. Genetic fate mapping indicated that the majority of cardiomyocytes within the regenerated tissue originated from preexisting cardiomyocytes. Echocardiography performed 2 months after surgery revealed that the regenerated ventricular apex had normal systolic function. Thus, for a brief period after birth, the mammalian heart appears to have the capacity to regenerate.


Cell Stem Cell | 2010

The Distinct Metabolic Profile of Hematopoietic Stem Cells Reflects Their Location in a Hypoxic Niche

Tugba Simsek; Fatih Kocabas; Junke Zheng; Ralph J. DeBerardinis; Ahmed I. Mahmoud; Eric N. Olson; Jay W. Schneider; Cheng Cheng Zhang; Hesham A. Sadek

Bone marrow transplantation is the primary therapy for numerous hematopoietic disorders. The efficiency of bone marrow transplantation depends on the function of long-term hematopoietic stem cells (LT-HSCs), which is markedly influenced by their hypoxic niche. Survival in this low-oxygen microenvironment requires significant metabolic adaptation. Here, we show that LT-HSCs utilize glycolysis instead of mitochondrial oxidative phosphorylation to meet their energy demands. We used flow cytometry to identify a unique low mitochondrial activity/glycolysis-dependent subpopulation that houses the majority of hematopoietic progenitors and LT-HSCs. Finally, we demonstrate that Meis1 and Hif-1alpha are markedly enriched in LT-HSCs and that Meis1 regulates HSC metabolism through transcriptional activation of Hif-1alpha. These findings reveal an important transcriptional network that regulates HSC metabolism.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family

Enzo R. Porrello; Ahmed I. Mahmoud; E R Simpson; Brett A. Johnson; David Grinsfelder; Diana C. Canseco; Pradeep P.A. Mammen; Beverly A. Rothermel; Eric N. Olson; Hesham A. Sadek

We recently identified a brief time period during postnatal development when the mammalian heart retains significant regenerative potential after amputation of the ventricular apex. However, one major unresolved question is whether the neonatal mouse heart can also regenerate in response to myocardial ischemia, the most common antecedent of heart failure in humans. Here, we induced ischemic myocardial infarction (MI) in 1-d-old mice and found that this results in extensive myocardial necrosis and systolic dysfunction. Remarkably, the neonatal heart mounted a robust regenerative response, through proliferation of preexisting cardiomyocytes, resulting in full functional recovery within 21 d. Moreover, we show that the miR-15 family of microRNAs modulates neonatal heart regeneration through inhibition of postnatal cardiomyocyte proliferation. Finally, we demonstrate that inhibition of the miR-15 family from an early postnatal age until adulthood increases myocyte proliferation in the adult heart and improves left ventricular systolic function after adult MI. We conclude that the neonatal mammalian heart can regenerate after myocardial infarction through proliferation of preexisting cardiomyocytes and that the miR-15 family contributes to postnatal loss of cardiac regenerative capacity.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Hippo pathway effector Yap promotes cardiac regeneration

Mei Xin; Yuri Kim; Lillian B. Sutherland; Masao Murakami; Xiaoxia Qi; John McAnally; Enzo R. Porrello; Ahmed I. Mahmoud; Wei Tan; John M. Shelton; James A. Richardson; Hesham A. Sadek; Rhonda Bassel-Duby; Eric N. Olson

The adult mammalian heart has limited potential for regeneration. Thus, after injury, cardiomyocytes are permanently lost, and contractility is diminished. In contrast, the neonatal heart can regenerate owing to sustained cardiomyocyte proliferation. Identification of critical regulators of cardiomyocyte proliferation and quiescence represents an important step toward potential regenerative therapies. Yes-associated protein (Yap), a transcriptional cofactor in the Hippo signaling pathway, promotes proliferation of embryonic cardiomyocytes by activating the insulin-like growth factor and Wnt signaling pathways. Here we report that mice bearing mutant alleles of Yap and its paralog WW domain containing transcription regulator 1 (Taz) exhibit gene dosage-dependent cardiac phenotypes, suggesting redundant roles of these Hippo pathway effectors in establishing proper myocyte number and maintaining cardiac function. Cardiac-specific deletion of Yap impedes neonatal heart regeneration, resulting in a default fibrotic response. Conversely, forced expression of a constitutively active form of Yap in the adult heart stimulates cardiac regeneration and improves contractility after myocardial infarction. The regenerative activity of Yap is correlated with its activation of embryonic and proliferative gene programs in cardiomyocytes. These findings identify Yap as an important regulator of cardiac regeneration and provide an experimental entry point to enhance this process.


Journal of Clinical Investigation | 2014

Macrophages are required for neonatal heart regeneration

Arin B. Aurora; Enzo R. Porrello; Wei Tan; Ahmed I. Mahmoud; Joseph A. Hill; Rhonda Bassel-Duby; Hesham A. Sadek; Eric N. Olson

Myocardial infarction (MI) leads to cardiomyocyte death, which triggers an immune response that clears debris and restores tissue integrity. In the adult heart, the immune system facilitates scar formation, which repairs the damaged myocardium but compromises cardiac function. In neonatal mice, the heart can regenerate fully without scarring following MI; however, this regenerative capacity is lost by P7. The signals that govern neonatal heart regeneration are unknown. By comparing the immune response to MI in mice at P1 and P14, we identified differences in the magnitude and kinetics of monocyte and macrophage responses to injury. Using a cell-depletion model, we determined that heart regeneration and neoangiogenesis following MI depends on neonatal macrophages. Neonates depleted of macrophages were unable to regenerate myocardia and formed fibrotic scars, resulting in reduced cardiac function and angiogenesis. Immunophenotyping and gene expression profiling of cardiac macrophages from regenerating and nonregenerating hearts indicated that regenerative macrophages have a unique polarization phenotype and secrete numerous soluble factors that may facilitate the formation of new myocardium. Our findings suggest that macrophages provide necessary signals to drive angiogenesis and regeneration of the neonatal mouse heart. Modulating inflammation may provide a key therapeutic strategy to support heart regeneration.


Journal of Clinical Investigation | 2012

MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death

Arin B. Aurora; Ahmed I. Mahmoud; Xiang Luo; Brett Johnson; Eva van Rooij; Satoshi Matsuzaki; Kenneth M. Humphries; Joseph A. Hill; Rhonda Bassel-Duby; Hesham A. Sadek; Eric N. Olson

Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abnormal increases in intracellular Ca²⁺ during myocardial reperfusion can cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Therapeutic modulation of Ca²⁺ handling provides some cardioprotection against the paradoxical effects of restoring blood flow to the heart, highlighting the significance of Ca²⁺ overload to IR injury. Cardiac IR is also accompanied by dynamic changes in the expression of microRNAs (miRNAs); for example, miR-214 is upregulated during ischemic injury and heart failure, but its potential role in these processes is unknown. Here, we show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The cardioprotective roles of miR-214 during IR injury were attributed to repression of the mRNA encoding sodium/calcium exchanger 1 (Ncx1), a key regulator of Ca²⁺ influx; and to repression of several downstream effectors of Ca²⁺ signaling that mediate cell death. These findings reveal a pivotal role for miR-214 as a regulator of cardiomyocyte Ca²⁺ homeostasis and survival during cardiac injury.


Nature | 2013

Meis1 regulates postnatal cardiomyocyte cell cycle arrest

Ahmed I. Mahmoud; Fatih Kocabas; Shalini Muralidhar; Wataru Kimura; Ahmed S. Koura; Suwannee Thet; Enzo R. Porrello; Hesham A. Sadek

The neonatal mammalian heart is capable of substantial regeneration following injury through cardiomyocyte proliferation. However, this regenerative capacity is lost by postnatal day 7 and the mechanisms of cardiomyocyte cell cycle arrest remain unclear. The homeodomain transcription factor Meis1 is required for normal cardiac development but its role in cardiomyocytes is unknown. Here we identify Meis1 as a critical regulator of the cardiomyocyte cell cycle. Meis1 deletion in mouse cardiomyocytes was sufficient for extension of the postnatal proliferative window of cardiomyocytes, and for re-activation of cardiomyocyte mitosis in the adult heart with no deleterious effect on cardiac function. In contrast, overexpression of Meis1 in cardiomyocytes decreased neonatal myocyte proliferation and inhibited neonatal heart regeneration. Finally, we show that Meis1 is required for transcriptional activation of the synergistic CDK inhibitors p15, p16 and p21. These results identify Meis1 as a critical transcriptional regulator of cardiomyocyte proliferation and a potential therapeutic target for heart regeneration.


Cell | 2014

The Oxygen-Rich Postnatal Environment Induces Cardiomyocyte Cell-Cycle Arrest through DNA Damage Response

Bao N. Puente; Wataru Kimura; Shalini Muralidhar; Jesung Moon; James F. Amatruda; Katherine J Phelps; David Grinsfelder; Beverly A. Rothermel; Rui Chen; Joseph A. Garcia; Celio X.C. Santos; Suwannee Thet; Eiichiro Mori; Michael Kinter; Paul M. Rindler; Serena Zacchigna; Shibani Mukherjee; David J. Chen; Ahmed I. Mahmoud; Mauro Giacca; Peter S. Rabinovitch; Asaithamby Aroumougame; Ajay M. Shah; Luke I. Szweda; Hesham A. Sadek

The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary postnatal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen-rich postnatal environment is the upstream signal that results in cell-cycle arrest of cardiomyocytes. Here, we show that reactive oxygen species (ROS), oxidative DNA damage, and DNA damage response (DDR) markers significantly increase in the heart during the first postnatal week. Intriguingly, postnatal hypoxemia, ROS scavenging, or inhibition of DDR all prolong the postnatal proliferative window of cardiomyocytes, whereas hyperoxemia and ROS generators shorten it. These findings uncover a protective mechanism that mediates cardiomyocyte cell-cycle arrest in exchange for utilization of oxygen-dependent aerobic metabolism. Reduction of mitochondrial-dependent oxidative stress should be an important component of cardiomyocyte proliferation-based therapeutic approaches.


Developmental Cell | 2015

Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration

Ahmed I. Mahmoud; Caitlin C. O’Meara; Matthew Gemberling; Long Zhao; Donald M. Bryant; Ruimao Zheng; Joseph Gannon; Lei Cai; Wen-Yee Choi; Gregory F. Egnaczyk; Caroline E. Burns; C. Geoffrey Burns; Calum A. MacRae; Kenneth D. Poss; Richard T. Lee

Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration.


Nature Protocols | 2014

Surgical models for cardiac regeneration in neonatal mice

Ahmed I. Mahmoud; Enzo R. Porrello; Wataru Kimura; Eric N. Olson; Hesham A. Sadek

Although amphibian and fish models of heart regeneration have existed for decades, a mammalian equivalent has long remained elusive. Our discovery of a brief postnatal window for heart regeneration in neonatal mice has led to the establishment of surgical models for cardiac regenerative studies in mammals for the first time. This protocol describes a 10-min surgical procedure to induce cardiac injury in 1-d-old neonatal mice. This allows for the analysis of cardiac regeneration after surgical amputation of the left ventricle (LV) (apical resection) and coronary artery occlusion (myocardial infarction (MI)). A comparative analysis of neonatal and adult responses to myocardial injury should enable identification of the key differences between regenerative and nonregenerative responses to cardiac injury. This protocol can also be adapted to the growing repertoire of genetic models available in the mouse, and it provides a valuable tool for unlocking the molecular mechanisms that guide mammalian heart regeneration during early postnatal life.

Collaboration


Dive into the Ahmed I. Mahmoud's collaboration.

Top Co-Authors

Avatar

Hesham A. Sadek

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric N. Olson

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Fatih Kocabas

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joseph A. Hill

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shalini Muralidhar

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joseph A. Garcia

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Chen

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge