Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmed M. Anter is active.

Publication


Featured researches published by Ahmed M. Anter.


international conference on innovations in bio inspired computing and applications | 2014

Neutrosophic Sets and Fuzzy C-Means Clustering for Improving CT Liver Image Segmentation

Ahmed M. Anter; Aboul Ella Hassanien; Mohamed Abu ElSoud; Mohamed F. Tolba

In this paper, an improved segmentation approach based on Neutrosophic sets (NS) and fuzzy c-mean clustering (FCM) is proposed. An application of abdominal CT imaging has been chosen and segmentation approach has been applied to see their ability and accuracy to segment abdominal CT images. The abdominal CT image is transformed into NS domain, which is described using three subsets namely; the percentage of truth in a subset T, the percentage of indeterminacy in a subset I, and the percentage of falsity in a subset F. The entropy in NS is defined and employed to evaluate the indeterminacy. Threshold for NS image is adapted using Fuzzy C-mean algorithm. Finally, abdominal CT image is segmented and liver parenchyma is selected using connected component algorithm. The proposed approach denoted as NSFCM and compared with FCM using Jaccard Index and Dice Coefficient. The experimental results demonstrate that the proposed approach is less sensitive to noise and performs better on nonuniform CT images.


international conference of the ieee engineering in medicine and biology society | 2015

Thermogram breast cancer prediction approach based on Neutrosophic sets and fuzzy c-means algorithm.

Tarek Gaber; Gehad Ismail; Ahmed M. Anter; Mona M. Soliman; Mona A. S. Ali; Noura Semary; Aboul Ella Hassanien; Václav Snášel

The early detection of breast cancer makes many women survive. In this paper, a CAD system classifying breast cancer thermograms to normal and abnormal is proposed. This approach consists of two main phases: automatic segmentation and classification. For the former phase, an improved segmentation approach based on both Neutrosophic sets (NS) and optimized Fast Fuzzy c-mean (F-FCM) algorithm was proposed. Also, post-segmentation process was suggested to segment breast parenchyma (i.e. ROI) from thermogram images. For the classification, different kernel functions of the Support Vector Machine (SVM) were used to classify breast parenchyma into normal or abnormal cases. Using benchmark database, the proposed CAD system was evaluated based on precision, recall, and accuracy as well as a comparison with related work. The experimental results showed that our system would be a very promising step toward automatic diagnosis of breast cancer using thermograms as the accuracy reached 100%.


International Journal of Biomedical Engineering and Technology | 2015

Automatic liver parenchyma segmentation system from abdominal CT scans using hybrid techniques

Ahmed M. Anter; Aboul Ella Hassanien; Mohamed Abu ElSoud; Ahmad Taher Azar

In this paper, a multi–layer heuristic approach is introduced to segment liver region from other tissues in multi–slice CT images. Image noise is a principal factor which hampers the visual quality of medical images and can therefore lead to misdiagnosis. To address this issue, we first utilise an algorithm based on median filter to remove noise and enhance the contrast of the CT image. This is followed by performing an adaptive threshold algorithm and morphological operators to preserve the liver structure and remove the fragments of other organs. Then, connected component labelling algorithm was applied to remove false positive regions and focused on liver region. To evaluate the performance of the proposed system, we present tests on different liver CT scans images. The experimental results show that the overall accuracy offered by the employed system is high compared with other related works as well as very fast which segment liver from abdominal CT in less than 0.6 s/slice.


International Journal of Rough Sets and Data Analysis archive | 2014

A Hybrid Approach to Diagnosis of Hepatic Tumors in Computed Tomography Images

Ahmed M. Anter; Mohamed Abu El Souod; Ahmad Taher Azar; Aboul Ella Hassanien

Liver cancer is one of the most popular cancer diseases and causes a large amount of death every year, can be reduced by early detection and diagnosis. Computer-aided liver analysis can help in the early detection and diagnosis of liver cancer. In this paper, enhancement and segmentation process is applied to increase the computation and focus on liver parenchyma. This parenchyma also segmented using Watershed and Region Growing algorithms to extract liver tumors. These tumors will be analyzed and characterized to distinguish between hemangioma (benign) and hepatocellular (malignant) tumors using Local Binary Pattern (LBP), Gray Level Co-occurrence matrix (GLCM), Fractal Dimension (FD) and feature fusion technique is applied to maximize and enhance the performance of the classifier rate. The authors review different methods for liver segmentation and abnormality classification. An attempt was made to combine the individual scores from different techniques in order to compensate their individual weaknesses and to preserve their strength. The authors present and exhaustively evaluate algorithms using computer vision techniques. The experimental results based on confusion matrix and kappa coefficient show that the higher accuracy is obtained of automatic agreement classification and suggest that the developed CAD system has great potential and promise in the automatic diagnosis of both benign and malignant tumors of liver.


International Journal of Computer Aided Engineering and Technology | 2012

Automatic mammogram segmentation and computer aided diagnoses for breast tissue density according to BIRADS dictionary

Mohamed Abu ElSoud; Ahmed M. Anter

It is widely accepted in the medical community that breast tissue density is an important risk factor for the development of breast cancer. Thus, the development of reliable automatic methods for classification of breast tissue is justified and necessary. Recent studies have shown that their sensitivity is significantly decreased as the density of the breast is increased. The internal density of the breast is a parameter that clearly affects the performance of segmentation algorithms in defining abnormal regions. In this study, the breast region was extracted from background, and pectoral muscle was suppressed. We review different methods for computing tissue density parameter. An attempt was made to combine the individual scores from different techniques in order to compensate their individual weaknesses and to preserve their strength. We also present and exhaustively evaluate algorithms using computer vision techniques. We obtained accuracy as high as 94% of automatic agreement classification.


Applications of Intelligent Optimization in Biology and Medicine | 2016

Particle Swarm Optimization Based Fast Fuzzy C-Means Clustering for Liver CT Segmentation

Abder-Rahman Ali; Micael S. Couceiro; Ahmed M. Anter; Aboul Ella Hassanien

A Fast Fuzzy C-Means (FFCM) clustering algorithm, optimized by the Particle Swarm Optimization (PSO) method, referred to as PSOFFCM, has been introduced and applied on liver CT images. Compared to FFCM, the proposed approach leads to higher values in terms of Jaccard Index and Dice Coefficient, and thus, indicating higher similarity with the ground truth provided. Based on ANOVA analysis, PSOFFCM showed better results in terms of Dice Coefficient. It also showed better mean values in terms of Jaccard Index and Dice Coefficient based on the box and whisker plots.


2015 Seventh International Conference on Advanced Communication and Networking (ACN) | 2015

Feature Selection Approach Based on Social Spider Algorithm: Case Study on Abdominal CT Liver Tumor

Ahmed M. Anter; Aboul Ella Hassanien; Mohamed Abu ElSoud; Tai-Hoon Kim

This paper addresses a new subset feature selection performed by new Social Spider Optimization algorithm (SSOA) to find optimal regions of the complex search space through the interaction of individuals in the population. SSOA is a new evolutionary computation technique which mimics the behavior of cooperative social-spiders based on the biological laws of the cooperative colony. The performance of SSOA associated with two reasons: (a) operators allow to increasing find the global optima in the search space, and (b) division of the population into male and female, provides the use of different rates between exploration and exploitation during the evolution process. A theoretical analysis on abdominal CT liver tumor dataset that models the number of correctly classified data is proposed using Confusion Matrix, Precision, Recall, and accuracy. The results show that the mechanism of SSOA provides very good exploration, local minima avoidance, and exploitation simultaneously.


asian conference on pattern recognition | 2013

Automatic Segmentation and Classification of Liver Abnormalities Using Fractal Dimension

Ahmed M. Anter; Aboul Ella Hassanien; Gerald Schaefer

Abnormalities in the liver include masses which can be benign or malignant. Due to the presence of these abnormalities, the regularity of the liver structure is altered, which changes its fractal dimension. In this paper, we present a computer aided diagnostic system for classifying liver abnormalities from abdominal CT images using fractal dimension features. We integrate different methods for liver segmentation and abnormality classification and propose an attempt that combines different techniques in order to compensate their individual weaknesses and to exploit their strengths. Classification is based on fractal dimension, with six different features being employed for extracted regions of interest. Experimental results confirm that our approach is robust, fast and able to effectively detect the presence of abnormalities in the liver.


International Journal of Advanced Computer Science and Applications | 2016

Computational Intelligence Optimization Algorithm Based on Meta-heuristic Social-Spider: Case Study on CT Liver Tumor Diagnosis

Mohamed Abu ElSoud; Ahmed M. Anter

Feature selection is an importance step in classification phase and directly affects the classification performance. Feature selection algorithm explores the data to eliminate noisy, redundant, irrelevant data, and optimize the classification performance. This paper addresses a new subset feature selection performed by a new Social Spider Optimizer algorithm (SSOA) to find optimal regions of the complex search space through the interaction of individuals in the population. SSOA is a new natural meta-heuristic computation algorithm which mimics the behavior of cooperative social-spiders based on the biological laws of the cooperative colony. Different combinatorial set of feature extraction is obtained from different methods in order to keep and achieve optimal accuracy. Normalization function is applied to smooth features between [0,1] and decrease gap between features. SSOA based on feature selection and reduction compared with other methods over CT liver tumor dataset, the proposed approach proves better performance in both feature size reduction and classification accuracy. Improvements are observed consistently among 4 classification methods. A theoretical analysis that models the number of correctly classified data is proposed using Confusion Matrix, Precision, Recall, and Accuracy. The achieved accuracy is 99.27%, precision is 99.37%, and recall is 99.19%. The results show that, the mechanism of SSOA provides very good exploration, exploitation and local minima avoidance.


Journal of Computational Science | 2018

Computational intelligence optimization approach based on particle swarm optimizer and neutrosophic set for abdominal CT liver tumor segmentation

Ahmed M. Anter; Aboul Ella Hassenian

Abstract In this paper, an improved segmentation approach for abdominal CT liver tumor based on neutrosophic sets (NS), particle swarm optimization (PSO), and fast fuzzy C-mean algorithm (FFCM) is proposed. To increase the contrast of the CT liver image, the intensity values and high frequencies of the original images were removed and adjusted firstly using median filter approach. It is followed by transforming the abdominal CT image to NS domain, which is described using three subsets namely; percentage of truth T, percentage of falsity F, and percentage of indeterminacy I. The entropy is used to evaluate indeterminacy in NS domain. Then, the NS image is passed to optimized FFCM using PSO to enhance, optimize clusters results and segment liver from abdominal CT. Then, these segmented livers passed to PSOFCM technique to cluster and segment tumors. The experimental results obtained based on the analysis of variance (ANOVA) technique, Jaccard Index and Dice Coefficient measures show that, the overall accuracy offered by neutrosophic sets is accurate, less time consuming and less sensitive to noise and performs well on non-uniform CT images.

Collaboration


Dive into the Ahmed M. Anter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Václav Snášel

Technical University of Ostrava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge