Ahmed T. Ayoub
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ahmed T. Ayoub.
Biophysical Journal | 2014
Ahmed T. Ayoub; Travis J. A. Craddock; Mariusz Klobukowski; Jack A. Tuszynski
Microtubules are key structural elements that, among numerous biological functions, maintain the cytoskeleton of the cell and have a major role in cell division, which makes them important cancer chemotherapy targets. Understanding the energy balance that brings tubulin dimers, the building blocks of microtubules, together to form a microtubule is especially important for revealing the mechanism of their dynamic instability. Several studies have been conducted to estimate various contributions to the free energy of microtubule formation. However, the hydrogen-bond contribution was not studied before as a separate component. In this work, we use concepts such as the quantum theory of atoms in molecules to estimate the per-residue strength of hydrogen bonds contributing to the overall stability that brings subunits together in pair of tubulin heterodimers, across both the longitudinal and lateral interfaces. Our study shows that hydrogen bonding plays a major role in the stability of tubulin systems. Several residues that are crucial to the binding of vinca alkaloids are shown to be strongly involved in longitudinal microtubule stabilization. This indicates a direct relation between the binding of these agents and the effect on the interfacial hydrogen-bonding network, and explains the mechanism of their action. Lateral contacts showed much higher stability than longitudinal ones (-462 ± 70 vs. -392 ± 59 kJ/mol), which suggests a dramatic lateral stabilization effect of the GTP cap in the β-subunit. The role of the M-loop in lateral stability in absence of taxol was shown to be minor. The B-lattice lateral hydrogen bonds are shown to be comparable in strength to the A-lattice ones (-462 ± 70 vs. -472 ± 46 kJ/mol). These findings establish the importance of hydrogen bonds to the stability of tubulin systems.
Theoretical Chemistry Accounts | 2014
Ahmed T. Ayoub; Jack A. Tuszynski; Mariusz Klobukowski
Hydrogen bonds are among the most important non-bonded interactions found in molecules. Different methods of estimating the strength of hydrogen bonds have been proposed to date. In this work, we present a comparison between methods of estimating hydrogen bond energies that are based on several electron density descriptors based on the quantum theory of atoms in molecules, the natural bond orbital theory, and Mulliken population analysis. The results indicate that the most powerful approach is based on the quantum theory of atoms in molecules, followed by the one employing the natural bond orbital theory. The Mulliken population analysis performed very poorly. The effect of including dispersion correction was also studied. Parameters for predicting hydrogen bond energies are presented.
PLOS Computational Biology | 2015
Ahmed T. Ayoub; Mariusz Klobukowski; Jack A. Tuszynski
Microtubules are long filamentous hollow cylinders whose surfaces form lattice structures of αβ-tubulin heterodimers. They perform multiple physiological roles in eukaryotic cells and are targets for therapeutic interventions. In our study, we carried out all-atom molecular dynamics simulations for arbitrarily long microtubules that have either GDP or GTP molecules in the E-site of β-tubulin. A detailed energy balance of the MM/GBSA inter-dimer interaction energy per residue contributing to the overall lateral and longitudinal structural stability was performed. The obtained results identified the key residues and tubulin domains according to their energetic contributions. They also identified the molecular forces that drive microtubule disassembly. At the tip of the plus end of the microtubule, the uneven distribution of longitudinal interaction energies within a protofilament generates a torque that bends tubulin outwardly with respect to the cylinders axis causing disassembly. In the presence of GTP, this torque is opposed by lateral interactions that prevent outward curling, thus stabilizing the whole microtubule. Once GTP hydrolysis reaches the tip of the microtubule (lateral cap), lateral interactions become much weaker, allowing tubulin dimers to bend outwards, causing disassembly. The role of magnesium in the process of outward curling has also been demonstrated. This study also showed that the microtubule seam is the most energetically labile inter-dimer interface and could serve as a trigger point for disassembly. Based on a detailed balance of the energetic contributions per amino acid residue in the microtubule, numerous other analyses could be performed to give additional insights into the properties of microtubule dynamic instability.
Journal of Molecular Graphics & Modelling | 2013
Ahmed T. Ayoub; Mariusz Klobukowski; Jack A. Tuszynski
Microtubules are among the most studied and best characterized cancer targets identified to date. Many microtubule stabilizers have been introduced so far that work by disrupting the dynamic instability of microtubules causing mitotic block and apoptosis. However, most of these molecules, especially taxol and epothilone, suffer absorption, toxicity and/or resistance problems. Here we employ a novel similarity-based virtual screening approach in the hope of finding other microtubule stabilizers that perform better and have lower toxicity and resistance. Epothilones, discodermolide, eleutherobin and sarcodictyin A have been found to compete with taxanes for the β-tubulin binding site, which suggests common chemical features qualifying for that. Our approach was based on similarity screening against all these compounds and other microtubule stabilizers, followed by virtual screening against the taxol binding site. Some novel hits were found, together with a novel highly rigid molecular scaffold. After visual manipulations, redocking and rescoring of this novel scaffold, its affinity dramatically increased in a promising trend, which qualifies for biological testing.
Journal of Chromatography A | 2018
Olivia A. Attallah; Medhat A. Al-Ghobashy; Ahmed T. Ayoub; Marianne Nebsen
Cytotoxic drugs used in cancer chemotherapy require the continuous monitoring of their plasma concentration levels for dose adjustment purposes. Such condition necessitates the presence of a sensitive technique for accurate extraction and determination of these drugs together with their active metabolites. In this study a novel solid phase extraction technique using magnetic molecularly imprinted nanoparticles (MMI-SPE) is combined with liquid chromatography tandem mass spectrometry (LC-MS/MS) to extract and determine the anti-leukemic agent; 6-mercaptopurine (6-MP) and its active metabolite thioguanine (TG) in human plasma. The magnetic molecularly imprinted nanoparticles (Fe3O4@MIP NPs) were synthesized via precipitation polymerization technique and were characterized using different characterization methods A computational approach was adopted to help in the choice of the monomer used in the fabrication process. The Fe3O4@MIPs NPs possessed a highly improved imprinting efficiency, fast adsorption kinetics following 2nd order kinetics and good adsorption capacity of 1.0 mg/g. The presented MMI-SPE provided the optimum approach in comparison to other reported ones to achieve good extraction recovery and matrix effect of trace levels of 6-MP and TG from plasma. Chromatographic separation was carried out using a validated LC-MS/MS assay and recovery, matrix effect and process efficiency were evaluated. Recovery of 6-MP and TG was in the range of 85.94-103.03%, while, matrix effect showed a mean percentage recovery of 85.94-97.62% and process efficiency of 85.54-96.18%. The proposed extraction technique is simple, effective and can be applicable to the extraction and analysis of other pharmaceutical compounds in complex matrices for therapeutic drug monitoring applications.
Bioorganic & Medicinal Chemistry Letters | 2016
Maninder Minu; Deepti Singh; Tejashree Mahaddalkar; Manu Lopus; Philip Winter; Ahmed T. Ayoub; Kristal Missiaen; Tatiana M. Tilli; Manijeh Pasdar; Jack A. Tuszynski
We have synthesized new, biologically active mono- and di-substituted 2,3,3a,4,5,6-hexahydrocyclopenta[c]pyrazole derivatives bearing electron withdrawing groups and electron donating groups. These derivative structures were characterized by their spectral and analytical data. The newly synthesized hexahydropyrazole analogues were evaluated for their in vitro anticancer activity against breast and lung cancer cell lines using a cytotoxicity bioassay. To understand their mechanism of action, tubulin binding assays were performed which pointed to their binding to microtubules in a mode similar to but not identical to colchicine, as evidenced by their KD value evaluation. Computational docking studies also suggested binding near the colchicine binding site on tubulin. These results were further confirmed by colchicine-binding assays on the most active compounds, which indicated that they bound to tubulin near but not at the colchicine site. The moderate cytotoxic effects of these compounds may be due to the presence of electron donating groups on the para-position of the phenyl ring, along with the hexahydropyrazole core nucleus. The observed anti-cancer activity based on inhibition of microtubule formation may be helpful in designing more potent compounds with a hexahydropyrazole moiety.
PLOS ONE | 2015
Marc St. George; Ahmed T. Ayoub; Asok Banerjee; Cassandra D.M. Churchill; Philip Winter; Mariusz Klobukowski; Carol E. Cass; Richard F. Ludueña; Jack A. Tuszynski; Sambasivarao Damaraju
Our previous work identified an intermediate binding site for taxanes in the microtubule nanopore. The goal of this study was to test derivatives of paclitaxel designed to bind to this intermediate site differentially depending on the isotype of β-tubulin. Since β-tubulin isotypes have tissue-dependent expression—specifically, the βIII isotype is very abundant in aggressive tumors and much less common in normal tissues—this is expected to lead to tubulin targeted drugs that are more efficacious and have less side effects. Seven derivatives of paclitaxel were designed and four of these were amenable for synthesis in sufficient purity and yield for further testing in breast cancer model cell lines. None of the derivatives studied were superior to currently used taxanes, however computer simulations provided insights into the activity of the derivatives. Our results suggest that neither binding to the intermediate binding site nor the final binding site is sufficient to explain the activities of the derivative taxanes studied. These findings highlight the need to iteratively improve on the design of taxanes based on their activity in model systems. Knowledge gained on the ability of the engineered drugs to bind to targets and bring about activity in a predictable manner is a step towards personalizing therapies.
RSC Advances | 2018
Olivia A. Attallah; Medhat A. Al-Ghobashy; Ahmed T. Ayoub; Jack A. Tuszynski; Marianne Nebsen
Analytical methods should be accurate and specific to measure plasma drug concentration. Nevertheless, current sample preparation techniques suffer from limitations, including matrix interference and intensive sample preparation. In this study, a novel technique was proposed for the synthesis of a molecularly imprinted polymer (MIP) on magnetic Fe3O4 nanoparticles (NPs) with uniform core–shell structure. The Fe3O4@MIPs NPs were then applied to separate and enrich an antiepileptic drug, levetiracetam, from human plasma. A computational approach was developed to screen the functional monomers and polymerization solvents to provide a suitable design for the synthesized MIP. Different analysis techniques and re-binding experiments were performed to characterize the Fe3O4@MIP NPs, as well as to identify optimal conditions for the extraction process. Adsorption isotherms were best fitted to the Langmuir model and adsorption kinetics were modeled with pseudo-second-order kinetics. The Fe3O4@MIP NPs showed reasonable adsorption capacity and improved imprinting efficiency. A validated colorimetric assay was introduced as a comparable method to a validated HPLC assay for the quantitation of levetiracetam in plasma in the range of 10–80 μg mL−1 after extraction. The results from the HPLC and colorimetric assays showed good precision (between 1.08% and 9.87%) and recoveries (between 94% and 106%) using the Fe3O4@MIP NPs. The limit of detection and limit of quantification were estimated to be 2.58 μg mL−1 and 7.81 μg mL−1, respectively for HPLC assay and 2.32 μg mL−1 and 7.02 μg mL−1, respectively for colorimetric assay. It is believed that synthesized Fe3O4@MIP NPs as a sample clean-up technique combined with the proposed assays can be used for determination of levetiracetam in plasma.
International Journal of Molecular Sciences | 2017
Ahmed T. Ayoub; Michael Staelens; Alessio Prunotto; Marco Agostino Deriu; Andrea Danani; Mariusz Klobukowski; Jack A. Tuszynski
Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs)—tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole–dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by −9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases +14 kcal/mol and destabilizes the seam by an excess of +5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.
Current Topics in Medicinal Chemistry | 2015
Travis J. A. Craddock; Stuart R. Hameroff; Ahmed T. Ayoub; Mariusz Klobukowski; Jack A. Tuszynski