Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmed Z. El-Hashim is active.

Publication


Featured researches published by Ahmed Z. El-Hashim.


British Journal of Pharmacology | 2012

Angiotensin‐(1–7) inhibits allergic inflammation, via the MAS1 receptor, through suppression of ERK1/2‐ and NF‐κB‐dependent pathways

Ahmed Z. El-Hashim; Waleed M. Renno; Raj Raghupathy; Heba T. Abduo; Saghir Akhtar; Ibrahim F. Benter

BACKGROUND AND PURPOSE Angiotensin‐(1–7) [Ang‐(1–7)] has anti‐inflammatory effects in models of cardiovascular disease and arthritis, but its effects in asthma are unknown. We investigated whether Ang‐(1–7) has anti‐inflammatory actions in a murine model of asthma.


Thorax | 2009

Nerve growth factor enhances cough and airway obstruction via TrkA receptor- and TRPV1-dependent mechanisms

Ahmed Z. El-Hashim; Sahar M. Jaffal

Background: Nerve growth factor (NGF) is an important mediator of airway hyper-responsiveness and hyperalgesia but its role in cough is unknown. Objectives: In this study the effects of NGF on the cough reflex and airway calibre were investigated in guinea pigs. The involvement of the tropomyosin-related kinase A (TrkA) receptor and transient receptor potential vanilloid-1 (TRPV1), and the p38 mitogen-activated protein kinase (MAPK)-dependent pathway in any NGF-induced effects on cough and airway obstruction was also assessed. Methods: Guinea pigs were placed in a transparent whole-body plethysmograph box. Cough was assessed visually, acoustically and by analysis of the airflow signal. Airway obstruction was measured using enhanced pause (Penh) as an index. Results: Exposure of guinea pigs to NGF did not induce a cough response nor a significant airway obstruction. However, exposure of guinea pigs to NGF immediately before citric acid inhalation resulted in a significant increase in the citric acid-induced cough and airway obstruction compared with vehicle-treated animals. Pretreatment with the TrkA receptor antagonist, K252a, or the TRPV1 antagonist, iodoresiniferatoxin, significantly inhibited the NGF-enhanced cough and airway obstruction. Exposure to NGF also increased p38 MAPK phosphorylation, but pretreatment with the p38 MAPK inhibitor, SB203580, did not affect either the NGF-enhanced cough or airway obstruction despite preventing the NGF-induced elevation in p38 MAPK phosphorylation. Conclusions: The data show that NGF can enhance both cough and airway obstruction via a mechanism that involves the activation of the TrkA receptor and TRPV1 but not the p38 MAPK-dependent pathway.


European Journal of Pharmacology | 2010

Anti-inflammatory and immunosuppressive effects of the enaminone E121

Ahmed Z. El-Hashim; Shida Yousefi; Ivan O. Edafiogho; Raj Raghupathy; Mariam H. M. Yousif; Hans-Uwe Simon

Asthma is a chronic inflammatory disease of the airways. The treatment of asthma is far from optimal and hence the need for novel therapeutic agents exists. The purpose of this study was to assess the anti-asthma effects of an enaminone, E121, and also its effects on human peripheral blood mononuclear cell proliferation and cytokine release. The effects of E121 were assessed in an ovalbumin-induced model of airway inflammation and airway hyperresponsiveness. In addition, the effects of E121 on phytohemagglutinin (PHA), anti-CD3 monoclonal antibody and lipopolysaccharide (LPS)-induced human peripheral blood mononuclear cell proliferation and cytokine release, respectively, were assessed. Treatment of mice with E121 significantly decreased the ovalbumin-induced increase in airway total cell influx and eosinophil infiltration and this was associated with an inhibition of ovalbumin-induced airway hyperresponsiveness. Moreover, E121 reduced PHA and anti-CD3-induced human peripheral blood mononuclear cell proliferation in vitro. E121 also inhibited PHA, anti-CD3 monoclonal antibody and LPS-induced cytokine release from human peripheral blood mononuclear cell cultures. These findings indicate that E121 exhibits anti-inflammatory and immunosuppressive activities.


Life Sciences | 2011

Anti-tussive and bronchodilator mechanisms of action for the enaminone E121

Ahmed Z. El-Hashim; Ivan O. Edafiogho; Sahar M. Jaffal; Mariam H. M. Yousif; Charles I. Ezeamuzie; Samuel B. Kombian

AIMS In this study, we investigated whether the enaminone, E121, has anti-tussive effects in a guinea pig model of cough, and if so, whether this effect is mediated via a central or peripheral site of action. We also assessed whether E121 has bronchodilator effects and the molecular mechanisms underlying any anti-tussive and/or bronchodilator effects. MAIN METHODS Whole body plethysmography was used to assess both cough and airway obstruction. A stereotaxic apparatus was used to administer drugs intracerebroventricularly (i.c.v.). Effects of E121 were examined in vitro on contractile effects in guinea pig bronchioles. KEY FINDINGS Pre-treatment of animals with E121 resulted in a significant inhibition in the citric acid-induced cough and airway obstruction compared to vehicle-pretreated animals. The K(ATP) antagonist, glibenclamide, significantly inhibited the anti-tussive and bronchoprotective effects of E121. Also, intra-tracheal administration of E121 resulted in a significant inhibition of both the citric acid-induced cough response and airway obstruction compared to vehicle-pretreated animals. By contrast, i.c.v. administration had no effect. Finally, E121 significantly inhibited carbachol-induced airway smooth muscle contractions, an effect that was reduced by both glibenclamide and propranolol. Interestingly, E121 enhanced histamine-induced cAMP release in human eosinophils although it did not directly elevate cAMP levels. SIGNIFICANCE The enaminone, E121, has anti-tussive and bronchodilatory effects and is topically, but not centrally, active. The anti-tussive mechanism of action of E121 seems to be K(ATP) channel dependent, whereas its bronchodilatory effects appear to be mediated via activation of both K(ATP) channels and β(2) receptors. Therefore, E121 may potentially represent a novel therapy for cough, particularly cough associated with airway obstruction.


Experimental Diabetes Research | 2014

Chronic Treatment with Ang-(1-7) Reverses Abnormal Reactivity in the Corpus Cavernosum and Normalizes Diabetes-Induced Changes in the Protein Levels of ACE, ACE2, ROCK1, ROCK2 and Omega-Hydroxylase in a Rat Model of Type 1 Diabetes

Mariam H. M. Yousif; Batoul Makki; Ahmed Z. El-Hashim; Saghir Akhtar; Ibrahim F. Benter

Angiotensin-(1-7) [Ang-(1-7)] may have beneficial effects in diabetes mellitus-induced erectile dysfunction (DMIED) but its molecular actions in the diabetic corpus cavernosum (CC) are not known. We characterized the effects of diabetes and/or chronic in vivo administration of Ang-(1-7) on vascular reactivity in the rat corpus cavernosum (CC) and on protein expression levels of potential downstream effectors of the renin-angiotensin-aldosterone system (RAAS) such as angiotensin-converting enzyme (ACE), ACE2, Rho kinases 1 and 2 (ROCK1 and ROCK2), and omega-hydroxylase, the cytochrome-P450 enzyme that metabolizes arachidonic acid to form the vasoconstrictor, 20-hydroxyeicosatetraenoic acid. Streptozotocin-treated rats were chronicically administered Ang-(1-7) with or without A779, a Mas receptor antagonist, during weeks 4 to 6 of diabetes. Ang-(1-7) reversed diabetes-induced abnormal reactivity to vasoactive agents (endothelin-1, phenylepherine, and carbachol) in the CC without correcting hyperglycemia. Six weeks of diabetes led to elevated ACE, ROCK1, ROCK 2, and omega-hydroxylase and a concomitant decrease in ACE2 protein expression levels that were normalized by Ang-(1-7) treatment but not upon coadministration of A779. These data are supportive of the notion that the beneficial effects of Ang-(1-7) in DMIED involve counterregulation of diabetes-induced changes in ACE, ACE2, Rho kinases, and omega-hydroxylase proteins in the diabetic CC via a Mas receptor-dependent mechanism.


International Journal of Immunopathology and Pharmacology | 2011

Effect of inhibition of the ubiquitin-proteasome-system and IκB kinase on airway inflammation and hyperresponsiveness in a murine model of asthma.

Ahmed Z. El-Hashim; Waleed M. Renno; Abduo Ht; Jaffal Sm; Saghir Akhtar; Ibrahim F. Benter

The current treatment of asthma is far from optimal and there is a need for novel therapeutic approaches. NFκB has recently been highlighted as an important pro-inflammatory transcriptional factor and its blockade is believed to represent a new therapeutic approach for asthma. The purpose of this study is to investigate the effects of blocking the actions of NFκB, through inhibition of the ubiquitin-proteasome system (UPS) or IκB kinase (IKK), in a murine model of asthma. Treatment with the UPS inhibitor, MG-132 (0.03 and 0.1 mg/kg), did not significantly affect the ovalbumin-induced increase in total and differential cell numbers, histological changes such as perivascular and peribronchial inflammatory cell infiltration, perivascular and peribronchial fibrosis or the increased Penh to methacholine. In contrast, treatment of mice with the IKK inhibitor, BAY 11-7085, (3 and 10 mg/kg) dose-dependently inhibited the ovalbumin-induced increase in airway leukocyte influx and decreased the percentage of airway lymphocytes, neutrophils and eosinophils. Also, BAY 11-7085-treated (10 mg/kg) mice showed a significant decrease in the histologically assessed inflammatory indices as well as a significant reduction in the ovalbumin-induced increase in Penh to inhaled methacholine. Furthermore, BAY 11-7085 significantly inhibited the ovalbumin-induced increase in the level of phosphorylation of IκBα and extracellular regulated kinases (ERK) 1/2, whilst MG-132 significantly increased the phosphorylation of (ERK) 1/2. These findings confirm the critical role that NFκB plays in airway inflammation, highlight the importance of IKK in regulating the pro-inflammatory activity of NFκB and also suggest that UPS may not be a useful drug target for asthma treatment.


PLOS ONE | 2015

Cationic Polyamidoamine Dendrimers as Modulators of EGFR Signaling In Vitro and In Vivo.

Saghir Akhtar; Bashayer Al-Zaid; Ahmed Z. El-Hashim; Bindu Chandrasekhar; Sreeja Attur; Mariam H. M. Yousif; Ibrahim F. Benter

Cationic polyamidoamine (PAMAM) dendrimers are branch-like spherical polymers being investigated for a variety of applications in nanomedicine including nucleic acid drug delivery. Emerging evidence suggests they exhibit intrinsic biological and toxicological effects but little is known of their interactions with signal transduction pathways. We previously showed that the activated (fragmented) generation (G) 6 PAMAM dendrimer, Superfect (SF), stimulated epidermal growth factor receptor (EGFR) tyrosine kinase signaling—an important signaling cascade that regulates cell growth, survival and apoptosis- in cultured human embryonic kidney (HEK 293) cells. Here, we firstly studied the in vitro effects of Polyfect (PF), a non-activated (intact) G6 PAMAM dendrimer, on EGFR tyrosine kinase signaling via extracellular-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) in cultured HEK 293 cells and then compared the in vivo effects of a single administration (10mg/kg i.p) of PF or SF on EGFR signaling in the kidneys of normal and diabetic male Wistar rats. Polyfect exhibited a dose- and time-dependent inhibition of EGFR, ERK1/2 and p38 MAPK phosphorylation in HEK-293 cells similar to AG1478, a selective EGFR inhibitor. Administration of dendrimers to non-diabetic or diabetic animals for 24h showed that PF inhibited whereas SF stimulated EGFR phosphorylation in the kidneys of both sets of animals. PF-mediated inhibition of EGFR phosphorylation as well as SF or PF-mediated apoptosis in HEK 293 cells could be significantly reversed by co-treatment with antioxidants such as tempol implying that both these effects involved an oxidative stress-dependent mechanism. These results show for the first time that SF and PF PAMAM dendrimers can differentially modulate the important EGFR signal transduction pathway in vivo and may represent a novel class of EGFR modulators. These findings could have important clinical implications for the use of PAMAM dendrimers in nanomedicine.


Pulmonary Pharmacology & Therapeutics | 2009

Intranasal administration of NECA can induce both anti-inflammatory and pro-inflammatory effects in BALB/c mice: Evidence for A2A receptor sub-type mediation of NECA-induced anti-inflammatory effects

Ahmed Z. El-Hashim; Heba T. Abduo; Ousama Rachid; Yunus Luqmani; Bushra Y. Al Ayadhy; Ghanim Al-Khaledi

The role of adenosine in allergic inflammation is unclear. This study investigated the effects of the non-selective adenosine receptor agonist, 5-N-ethylcarboxamidoadenosine (NECA), on immunized only and immunized and airway challenged mice. The adenosine receptor sub-type(s) mediating the NECA effects and the A(2A) receptor mRNA expression were also investigated. In mice that were only immunized, intranasal NECA (1 mM) administration caused a significant increase in bronchoalveolar lavage total cell count (TCC), neutrophils and eosinophils (>1.5-, >6 and >60-fold, respectively). Two and four intranasal ovalbumin (OVA) challenges induced a significant (P < 0.05) increase in TCC (>2.1- and >4-fold, respectively) and eosinophils (>350- and >1700-fold, respectively). Real-time PCR analysis showed that the A(2A) receptor sub-type mRNA was significantly increased (P < 0.05) in the lung tissue of immunized mice following both two and four OVA challenges. NECA (0.3 mM) treatment caused a significant reduction in the increase induced by the two and four OVA challenges in the TCC by 46.1% and 56.6%, respectively, eosinophils by 70.1% and 75.6%, respectively, and in the A(2A) receptor sub-type mRNA by 43.2% and 41.0%, respectively. Treatment with the A(2A) receptor antagonist, 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine), SCH-58261, completely reversed both the NECA-mediated reduction in TCC and eosinophilia. Moreover, OVA challenge of immunized mice, over 2 consecutive days, resulted in a significant (P < 0.05) increase in TCC (4.5-fold) and eosinophils (>2000-fold) that was detected 72 h later. NECA (0.3 mM) treatment, at 24 and 48 h post OVA challenge, significantly reduced the increase in both TCC and eosinophils by 45.0% and 74.8%, respectively. Our data show that in immunized, but not OVA-challenged mice, high dose of NECA (1 mM) induces an inflammatory airway response. In contrast, in models of inflammation, NECA, at mainly 0.3 mM, induces a significant anti-inflammatory effect when administered prior to the induction of airway inflammation or therapeutically following its establishment. The data also indicate that the anti-inflammatory action of NECA seems to be mediated via the A(2A) receptor sub-type and hence the use of selective A(2A) receptor agonists as potential therapeutic agents in the treatment of inflammatory diseases such as asthma should be investigated further.


Pharmacological Research | 2013

Nerve growth factor enhances cough via a central mechanism of action

Ahmed Z. El-Hashim; Sahar M. Jaffal; Fatma T. Al-Rashidi; Yunus Luqmani; Saghir Akhtar

The mechanisms involved in enhanced cough induced by central and inhaled NGF in guinea pigs were investigated. Cough and airway function were assessed by plethysmography following inhaled or intracerebroventricular (i.c.v.) NGF treatment. Expression of TrkA and/or TRPV1 was determined in bronchi and/or brainstem by real-time PCR and immunoblotting. I.c.v. and inhaled NGF enhanced citric acid induced-cough and airway obstruction. Pretreatment (i.c.v.) with antagonists of TrkA (K252a) or TRPV1 (IRTX) significantly reduced both the NGF (i.c.v.) enhanced cough and airway obstruction whereas the NK1 antagonist (FK888) inhibited only cough. The H1 antagonist (cetirizine) did not affect either. Inhaled NGF increased phosphorylation of TrkA receptors in the bronchi but not the brainstem at 0.5h post-treatment. TrkA mRNA was elevated at 0.5h in the bronchi and at 24h in the brainstem while TRPV1 mRNA was elevated from 0.5h to 24h in brainstem and at 24h in the bronchi. Pretreatment (i.c.v.) with IRTX, but not K252a, significantly inhibited the inhaled NGF-enhanced cough. Central NGF administration enhances cough and airway obstruction by mechanisms dependent on central activation of TrkA, TRPV1 and NK1 receptors while inhaled NGF enhances cough via a mechanism dependent on central TRPV1 and not TrkA receptors. These data show that NGF, in addition to its effects on the airways, has an important central mechanism of action in the enhancement of cough. Therefore, therapeutic strategies targeting NGF signaling in both the airways and CNS may be more effective in the management of cough.


Journal of Pharmacology and Experimental Therapeutics | 2014

Antiallergic and Antiasthmatic Effects of a Novel Enhydrazinone Ester (CEE-1): Inhibition of Activation of Both Mast Cells and Eosinophils

Charles I. Ezeamuzie; Ahmed Z. El-Hashim; Waleed M. Renno; Ivan O. Edafiogho

Activation of mast cells and eosinophils is a fundamental process in the pathophysiology of allergic diseases. We have previously reported that the novel enhydrazinone ester CEE-1 (ethyl 4-phenylhydrazinocyclohex-3-en-2-oxo-6-phenyl-1-oate) possesses potent anti-inflammatory activity. We have now tested whether the compound also possesses antiallergic and antiasthmatic effects in vitro and in vivo. The compound significantly inhibited degranulation and leukotriene C4 (LTC4) release from activated human eosinophils, as well as IgE-dependent degranulation and LTC4 release from passively sensitized rat basophilic leukemia cells and bone marrow–derived mouse mast cells. In human eosinophils, the drug was more potent in inhibiting degranulation than LTC4 release {IC50 = 0.4 μM [confidence interval (CI): 0.1–0.9] versus 3.8 μM (CI: 0.9–8.3)}, whereas in mast cells the reverse was essentially the case. The drug did not affect stimulus-induced calcium transients in eosinophils but significantly inhibited early phosphorylation of extracellular signal-regulated kinases 1/2 and p38–mitogen-activated protein kinases (MAPK). In vivo, topical application of 4.5–15 mg/kg of the compound significantly inhibited allergen-induced passive cutaneous anaphylaxis in mice. Similarly, in the mouse asthma model, the intranasal administration of 6.5–12.5 mg/kg of the compound significantly inhibited bronchial inflammation and eosinophil accumulation in bronchial lavage fluid, as well as abolishing airway hyper-responsiveness to methacholine. These results show that CEE-1 inhibits the activation of both mast cells and eosinophils in vitro, probably by blocking MAPK-activation pathways, and that these effects are translated into antiallergic and antiasthmatic effects in vivo. The compound, therefore, has potential application in the treatment of asthma and other allergic diseases.

Collaboration


Dive into the Ahmed Z. El-Hashim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge